SITE Calder Hall

SITE OWNER Nuclear Decommissioning Authority

WASTE CUSTODIAN Sellafield Limited

WASTE TYPE LLW

Is the waste subject to

Scottish Policy:

No

WASTE VOLUMES

Reported

Stocks: At 1.4.2022...... 7.6 m³

Total future arisings: 0 m³

Total waste volume: 7.6 m³

Comment on volumes: Waste stream 2A06 comprises redundant activated control rods and flux scanner guide

tubes removed from the reactors in the 1960's and stored in a purpose built facility. This LLW will arise as the rods are removed from the facility and cut to separate the LLW from

the ILW (waste stream 2A01).

Uncertainty factors on

volumes:

Stock (upper): x 1.2

Arisings (upper) x

Х

Stock (lower): x 0.8 Arisings (lower)

WASTE SOURCE The waste has arisen from the operation of Calder reactors and activation of the materials

due to neutron exposure.

PHYSICAL CHARACTERISTICS

General description: The waste arises as boron steel tubes encased in a stainless steel outer tube, sealed at

both ends, from the operation of Calder reactors. Control rods are long and therefore difficult to package without size reduction. It is envisaged that each rod will be size reduced to segregate the ILW from the LLW. Some of the rods have been sheathed in concrete as

part of their installation in the storage facility.

Physical components (%wt): Boron steel (~62 wt%), stainless steel (<5 wt%), concrete (33 wt%).

Sealed sources: The waste does not contain sealed sources.

Bulk density (t/m³): 0.96

Comment on density: Bulk density value taken from waste stream characterisation document for LLW in the

Control Rod storage facility.

CHEMICAL COMPOSITION

General description and components (%wt):

Boron steel (~62 wt%), stainless steel (<5 wt%), concrete (33%).

Chemical state: Neutral
Chemical form of H-3: Nil radionuclides: C-14: N

C-14: Nil CI-36: Nil Se-79: Nil. Tc-99: Nil. I-129: Nil Ra: Nil. Th: Nil U: Nil.

U: Nil. Np: Nil. Pu: Nil.

Metals and alloys (%wt): The waste comprises boron steel tubes encased in a stainless steel outer tube, sealed at

both ends.

	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel	<5.0	18:8 austenitic grade.	,
Other ferrous metals	~62.0		
Iron			
Aluminium			
Beryllium	0		
Cobalt	0		
Copper			
Lead	0		
Magnox/Magnesium	0		
Nickel			
Titanium			
Uranium	0		
Zinc	0		
Zircaloy/Zirconium	0		
Other metals	0		
Organics (%wt): There are no organic	c material	s in the waste.	
	(%wt)	Type(s) and comment	% of total C14
Total cellulosics	0		activity
Paper, cotton	0		
Wood	0		
Halogenated plastics	0		
Total non-halogenated plastics	0		
Condensation polymers	0		
Others	0		
Organic ion exchange materials	0		
Total rubber	0		
Halogenated rubber	0		
Non-halogenated rubber	0		
Hydrocarbons			
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Others			
Other organics	0		
Other materials (%wt):			

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	0		,
Inorganic sludges and flocs	0		
Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	33.0	As concrete sheathes around the outside of some of the control rods.	
Sand	0	No sand, other than that present in the concrete.	
Glass/Ceramics	0		
Graphite	0		
Desiccants/Catalysts			
Asbestos	0		
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids	0		
Free non-aqueous liquids	0		
Powder/Ash	0		
Inorganic anions (%wt): No inorganic anion	s are prese	ent.	
	(%wt)	Type(s) and comment	
Fluoride	0		
Chloride	0		
lodide	0		
Cyanide	0		
Carbonate	0		
Nitrate	0		
Nitrite	0		
Phosphate	0		
Sulphate	0		
Sulphide	0		
Materials of interest for - waste acceptance criteria:	-		
	(%wt)	Type(s) and comment	
Combustible metals	0		
Low flash point liquids	0		
Explosive materials	0		
Phosphorus	0		
Hydrides	0		
Biological etc. materials	0		
Biodegradable materials	0		

	Putrescible wastes	0	
	Non-putrescible wastes		
	Corrosive materials	0	
	Pyrophoric materials	0	
	Generating toxic gases	0	
	Reacting with water	0	
	Higher activity particles		
	Soluble solids as bulk chemical compounds		
Hazardous su non hazardou			
		(%wt)	Type(s) and comment
	Acrylamide		
	Benzene		
	Chlorinated solvents		
	Formaldehyde		
	Organometallics		
	Phenol		
	Styrene		
	Tri-butyl phosphate		
	Other organophosphates		
	Vinyl chloride		
	Arsenic		
	Barium		
	Boron	<4.0	
	Boron (in Boral)		
	Boron (non-Boral)	<4.0	
	Cadmium		
	Caesium		
	Selenium		
	Chromium		
	Molybdenum		
	Thallium		
	Tin		
	Vanadium		
	Mercury compounds		
	Others		
	Electronic Electrical Equipment (EEE)		
	EEE Type 1		
	EEE Type 2		
	EEE Type 3		
	EEE Type 4		
	EEE Type 5		

g agents (%wt):	No				
		(%wt)	Type(s) and comment		
EDTA					
DPTA					
NTA					
Polycarboxylic	acids				
-	•	0			
the waste to rete items:				ILW compo	onent of the
IT, PACKAGING	AND DISPOSAL				
site / off-site	Treatment	Iroatmont			
n planned	Supercompaction Incineration Solidification Decontamination Metal treatment Size reduction Decay storage Recyling / reuse Other / various None It has been assum out prior to dispos consigned to LLW	n (HFC) ned for the 2 sal and that	all the LLW will be non-comp	pactable wa	ste to be
outes:	Disposal Route			Stream volume %	Disposal density t/m3
	Expected to be constructed to be constructed to be constructed to be constructed to be constructed.	Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known			
	DPTA NTA Polycarboxylic Other organic of the waste to rete items: IT, PACKAGING site / off-site :	rete items: control rods which IT, PACKAGING AND DISPOSAL site / off-site : Treatment Low force compa Supercompaction Incineration Solidification Decontamination Metal treatment Size reduction Decay storage Recyling / reuse Other / various None It has been assum out prior to dispos consigned to LLW Disposal Route Expected to be content of the	DPTA NTA Polycarboxylic acids	DPTA DPTA NTA Polycarboxylic acids	DPTA DPTA NTA Polycarboxylic acids

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Notice	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing: No

Estimated

Baseline Opportunity Stream Opportunity Management Route Management Route Volume (%) Opportunity Confidence

Opportunity Confidence Comment will be realised

Waste Packaging for Disposal:

Container	Stream volume %	Waste loading m³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other	100.0	10	< 1

Other information: Data have been presented as though the waste will be in dedicated containers.

However it is likely that this waste will be placed in containers with other LLW.

Waste Planned for Disposal at the LLW Repository:

Container voidage: Inaccessable voidage is not expected. The amount of voidage is dependent on the

alternative materials packaged with this waste stream.

Waste Characterisation

Form (WCH):

It is not yet determined if the waste meets LLWR's Waste Acceptance Criteria

(WAC).

Waste consigned for disposal to LLWR in year of generation:

No. The waste was generated during the 1960s and has been in storage ever since.

It is anticipated to be consigned in 2027 - 2029.

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation: -

Bounding cuboidal volume:

Inaccessible voidage: -

Other information:

RADIOACTIVITY

Source: Cobalt-60 is the main source of activity in the waste arising from activation.

Uncertainty: The average specific activity has been calculated using the estimated volume of LLW in

the stored waste (7.58 m³).

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

Activities have been estimated using available information on the process by which the control rods and guide tubes were activated. Following 45 years of decay, no radionuclides

are expected other than Co-60 and a trace of Ni-63.

Other information:

	Mean radioactivity, TBq/m³			Mean radioactivity, TBq/m³					
Nuclide	Waste at	Bands and	Future	Bands and	Nuclide	Waste at	Bands and	Future	Bands and
-	1.4.2022	Code	arisings	Code		1.4.2022	Code	arisings	Code
H 3					Gd 153				
Be 10 C 14					Ho 163 Ho 166m				
Na 22					Tm 170				
Al 26					Tm 170				
CI 36					Lu 174				
Ar 39					Lu 176				
Ar 42					Hf 178n				
K 40					Hf 182				
Ca 41					Pt 193				
Mn 53					TI 204				
Mn 54					Pb 205				
Fe 55					Pb 210				
Co 60	~1.60E-03	AA 2			Bi 208				
Ni 59					Bi 210m				
Ni 63	~8.34E-05	AA 2			Po 210				
Zn 65					Ra 223				
Se 79					Ra 225				
Kr 81					Ra 226				
Kr 85					Ra 228				
Rb 87					Ac 227				
Sr 90					Th 227				
Zr 93					Th 228				
Nb 91 Nb 92					Th 229 Th 230				
Nb 92 Nb 93m					Th 232				
Nb 94					Th 234				
Mo 93					Pa 231				
Tc 97					Pa 233				
Tc 99					U 232				
Ru 106					U 233				
Pd 107					U 234				
Ag 108m					U 235				
Ag 110m					U 236				
Cd 109					U 238				
Cd 113m					Np 237				
Sn 119m					Pu 236				
Sn 121m					Pu 238				
Sn 123					Pu 239				
Sn 126					Pu 240				
Sb 125					Pu 241				
Sb 126 Te 125m					Pu 242 Am 241				
Te 125m					Am 241 Am 242m				
I 129					Am 243				
Cs 134					Cm 242				
Cs 135					Cm 243				
Cs 137	1				Cm 244				
Ba 133					Cm 245				
La 137					Cm 246				
La 138					Cm 248				
Ce 144					Cf 249				
Pm 145					Cf 250				
Pm 147					Cf 251				
Sm 147					Cf 252				
Sm 151					Other a				
Eu 152					Other b/g				
Eu 154					Total a	0		0	
Eu 155	1				Total b/g	1.68E-03	AA 2	0	
L	-		-					<u>- </u>	

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in

mean radioactivity.

- Measured activity
 Derived activity (best estimate)
 Derived activity (upper limit)

- 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined 8 Not expected to be present in significant quantity