SITE Chapelcross

SITE OWNER Nuclear Decommissioning Authority

WASTE CUSTODIAN Magnox Limited

WASTE TYPE ILW

Is the waste subject to

Scottish Policy:

No

WASTE VOLUMES

Reported

Stocks: At 1.4.2022...... 15.0 m³

Total future arisings: 0 m³

Total waste volume: 15.0 m³

Comment on volumes: There will be no further arisings. 2.2m3 of the desiccant has now been transferred to a

Type VI DCIC

Uncertainty factors on Stock (upper): x 1.2 Arisings (upper) x volumes: Stock (lower): x 0.8 Arisings (lower) x

WASTE SOURCE Aluminium Oxide Pellets

PHYSICAL CHARACTERISTICS

General description: Granules, thought to be aluminium oxide pellets. None.

Physical components (%wt): Desiccant (100%)

Sealed sources: The waste does not contain sealed sources.

Bulk density (t/m³): ~0.6

Comment on density: -

CHEMICAL COMPOSITION

General description and

components (%wt):

Aluminium Oxide Pellets

Chemical state: Neutral

Chemical form of H-3: The tritium will be present as tritiated water.

radionuclides: C-14: Content is insignificant.

CI-36: Not significant

Se-79: Content is insignificant. Tc-99: Content is insignificant. Ra: Content is insignificant. Th: Content is insignificant. U: Content is insignificant. U: Content is insignificant. Np: Content is insignificant. Pu: Content is insignificant.

Metals and alloys (%wt):

(%wt) Type(s) / Grade(s) with proportions % of total C14

activity

Iron.....

Aluminium..... P

Beryllium...... 0

 Cobalt.....
 0

	Nickel			
	Titanium			
	Uranium			
	Zinc	0		
	Zircaloy/Zirconium	. 0		
	Other metals	. 0	None.	
Organics (%	%wt): No metallic materia	al is expect	ed. No organic materials are present.	
		(%wt)	Type(s) and comment	% of total C14
	Total cellulosics	0		activity
	Paper, cotton	0		
	Wood	0		
	Halogenated plastics	0		
	Total non-halogenated plastics	0		
	Condensation polymers	0		
	Others	0		
	Organic ion exchange materials	0		
	Total rubber	0		
	Halogenated rubber	0		
	Non-halogenated rubber	0		
	Hydrocarbons			
	Oil or grease			
	Fuel			
	Asphalt/Tarmac (cont.coal tar)			
	Asphalt/Tarmac (no coal tar)			
	Bitumen			
	Others			
	Other organics	0		
Other mate	rials (%wt):			
		(%wt)	Type(s) and comment	% of total C14 activity
	Inorganic ion exchange materials	0		
	Inorganic sludges and flocs	0		
	Soil	0		
	Brick/Stone/Rubble	0		
	Cementitious material	0		
	Sand			
	Glass/Ceramics	0		
	Graphite	0		
	Desiccants/Catalysts	100.0	Aluminium Oxide Pellets	
	Asbestos	0		
	Non/low friable			
	Moderately friable			

	Highly friable		
	Free aqueous liquids	0	
	Free non-aqueous liquids	0	
	Powder/Ash	TR	
Inorganic an	ions (%wt):		
-		(%wt)	Type(s) and comment
		(70Wt)	rype(s) and comment
	Fluoride	0	
	Chloride	0	
	lodide	0	
	Cyanide	0	
	Carbonate	0	
	Nitrate	0	
	Nitrite	0	
	Phosphate	0	
	Sulphate	0	
	Sulphide	0	
Materials of waste accep	interest for None. tance criteria:		
		(%wt)	Type(s) and comment
	Combustible metals	0	
	Low flash point liquids	0	
	Explosive materials	0	
	Phosphorus	0	
	Hydrides	0	
	Biological etc. materials	0	
	Biodegradable materials	0	
	Putrescible wastes	0	
	Non-putrescible wastes		
	Corrosive materials	0	
	Pyrophoric materials	0	
	Generating toxic gases	0	
	Reacting with water	0	
	Higher activity particles		
	Soluble solids as bulk chemical compounds		
	substances / - ous pollutants:		
		(%wt)	Type(s) and comment
	Acrylamide		
	Benzene		
	Chlorinated solvents		
	Formaldehyde		

Organometallics		
Phenol		
Styrene		
Tri-butyl phosphate		
Other organophosphates		
Vinyl chloride		
Arsenic		
Barium		
Boron	0	
Boron (in Boral)		
Boron (non-Boral)		
Cadmium		
Caesium		
Selenium		
Chromium		
Molybdenum		
Thallium		
Tin		
Vanadium		
Mercury compounds		
Others		
Electronic Electrical Equipment (EEE)		
EEE Type 1		
EEE Type 2		
EEE Type 3		
EEE Type 4		
EEE Type 5		
Complexing agents (%wt): No		
	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		
Total complexing agents	0	
Potential for the waste to contain discrete items: No. In & of itself no could be	t a DI; as	sumed not likely to contain any "rogue" items that

TREATMENT, PACKAGING AND DISPOSAL

Waste that is currently ILW: This waste stream will be decay stored

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)		
Incineration		
Solidification		
Decontamination		
Metal treatment		
Size reduction		
Decay storage		
Recyling / reuse		
Other / various		
None		100.0

Comment on planned treatments:

Waste will be decayed stored

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known	100.0	0.60

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Noute	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
_	_	_	_	_	_

Waste Packaging for Disposal:

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other	100.0	6	3

Other information: Once decayed to LLW, the waste will be transferred into 200 litre drums and

placed inside a HHISO. Expect between 30 and 36 drums per HHISO. For this

Inventory a loading of 30 drums per HHISO has been assumed.

Waste Planned for Disposal at the LLW Repository:

Container voidage: -

The waste does not meet the LLWR's Waste Acceptance Criteria (WAC).

Waste will be decay stored until it meets WAC

Waste consigned for disposal to LLWR in year of generation:

No. Waste will be decay stored until it meets WAC

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation: -

Bounding cuboidal volume:

Inaccessible voidage: -

Other information:

RADIOACTIVITY

Source: Contamination by tritiated water from gas circuit drying.

Uncertainty: The desiccant is still in-situ and has not been sampled. Activities are indicative only.

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

Activities are based on similar material at other reactor sites.

Other information: -

	Mean radioactivity, TBq/m³				Mean radioactivity, TBq/m³				
Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code	Nuclide		Bands and Code	Future arisings	Bands and Code
H 3	1.02E-01	CC 2	3-		Gd 153	1.1.2022	8		
Be 10		8			Ho 163		8		
C 14		8			Ho 166m		8		
Na 22		8			Tm 170		8		
Al 26		8			Tm 171		8		
CI 36	1E-04	CC 2			Lu 174		8		
Ar 39		8			Lu 176		8		
Ar 42		8			Hf 178n		8		
K 40		8			Hf 182		8		
Ca 41		8			Pt 193		8		
Mn 53		8			TI 204		8		
Mn 54		6			Pb 205		8		
Fe 55		6			Pb 210		8		
Co 60	1.45E-06	CC 2			Bi 208		8		
Ni 59		8			Bi 210m		8		
Ni 63		8			Po 210		8		
Zn 65		8			Ra 223		8		
Se 79		8			Ra 225		8		
Kr 81		8			Ra 226		8		
Kr 85		8			Ra 228		8		
Rb 87		8			Ac 227		8		
Sr 90		8			Th 227		8		
Zr 93		8			Th 228		8		
Nb 91		8			Th 229		8		
Nb 92		8			Th 230		8		
Nb 93m		8			Th 232		8		
Nb 94 Mo 93		8 8			Th 234 Pa 231		8 8		
Tc 97		8			Pa 233		8		
Tc 99		8			U 232		8		
Ru 106		8			U 233		8		
Pd 107		8			U 234		8		
Ag 108m		8			U 235		8		
Ag 110m		8			U 236		8		
Cd 109		8			U 238		8		
Cd 113m		8			Np 237		8		
Sn 119m		8			Pu 236		8		
Sn 121m		8			Pu 238		8		
Sn 123		8			Pu 239		8		
Sn 126		8			Pu 240		8		
Sb 125		8			Pu 241		8		
Sb 126		8			Pu 242		8		
Te 125m		8			Am 241	<4.91E-08	C 3		
Te 127m		8			Am 242m		8		
I 129		8			Am 243		8		
Cs 134		6			Cm 242		8		
Cs 135		8			Cm 243		8		
Cs 137	6.06E-08	CC 2			Cm 244		8		
Ba 133		8			Cm 245		8		
La 137		8			Cm 246		8		
La 138		8			Cm 248		8		
Ce 144		8			Cf 249		8		
Pm 145		8			Cf 250		8		
Pm 147		8			Cf 251		8		
Sm 147		8			Cf 252		8		
Sm 151		8 8			Other a Other b/g				
Eu 152 Eu 154		8			Total a	4.91E-08	CC 2	0	
Eu 155		8			Total b/g	4.91E-08 1.02E-01	CC 2	0	
	Inner and Low				Code	1.026-01	JU 2	!	

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in

mean radioactivity.

Code

- 1 Measured activity
 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity
- 8 Not expected to be present in significant quantity