SITE Chapelcross SITE OWNER **Nuclear Decommissioning Authority WASTE CUSTODIAN** Magnox Limited LLW **WASTE TYPE** Is the waste subject to No Scottish Policy: **WASTE VOLUMES** Reported At 1.4.2022..... Stocks: $0 \, \text{m}^3$ 1.4.2027 - 31.3.2029...... Future arisings -90.0 m³ Total future arisings: 90.0 m³ Total waste volume: 90.0 m³ Comment on volumes: Arisings (upper) Uncertainty factors on Stock (upper): x 1.2 Х volumes: Stock (lower): Arisings (lower) x 0.8 **WASTE SOURCE** The iodine filters were designed to remove I-131 and particulate from the reactor gas circuit in case of an incident. The charcoal was used as a filter medium in the iodine filters. PHYSICAL CHARACTERISTICS General description: **Activated Charcoal** Physical components (%vol): Sealed sources: The waste does not contain sealed sources. Bulk density (t/m³): Typical skeletal or real density is 2,150 to 2,200 kg/m³, close to the density of graphite Comment on density: **CHEMICAL COMPOSITION** General description and The material is described as activated charcoal but this does not refer to radiological components (%wt): activation. Activated charcoal is a form of carbon that has been processed to make it extremely porous and thus to have a very large surface area available for adsorption. The charcoal is granular and described as being between "coffee granules" and "coarse sand" in particle size. There will be a small amount of charcoal dust present. Chemical state: Chemical form of radionuclides: Metals and alloys (%wt): (%wt) Type(s) / Grade(s) with proportions % of total C14 activity Stainless steel..... Other ferrous metals..... Iron..... Aluminium..... Beryllium..... Cobalt..... Copper..... Lead..... Magnox/Magnesium.....

Nickel.....
Titanium.....

	Uranium			
	Zinc			
	Zircaloy/Zirconium			
	Other metals			
Organics (%	Swt): -			
		(%wt)	Type(s) and comment	% of total C14
	Total cellulosics	0		activity
	Paper, cotton	-		
	Wood			
	Halogenated plastics			
	Total non-halogenated plastics	0		
	Condensation polymers			
	Others			
	Organic ion exchange materials			
	Total rubber	0		
	Halogenated rubber			
	Non-halogenated rubber			
	Hydrocarbons			
	Oil or grease			
	Fuel			
	Asphalt/Tarmac (cont.coal tar)			
	Asphalt/Tarmac (no coal tar)			
	Bitumen			
	Others			
	Other organics			
Other mater	rials (%wt):			
		(%wt)	Type(s) and comment	% of total C14 activity
	Inorganic ion exchange materials			,
	Inorganic sludges and flocs			
	Soil			
	Brick/Stone/Rubble			
	Cementitious material			
	Sand			
	Glass/Ceramics			
	Graphite			
	Desiccants/Catalysts			
	Asbestos	0		
	Non/low friable			
	Moderately friable			
	Highly friable			
	Free aqueous liquids			

	Free non-aqueous liquids		
	Powder/Ash	100.0	Activated Charcoal
Inorganic ai	nions (%wt):		
		(%wt)	Type(s) and comment
	Fluoride		
	Chloride		
	lodide		
	Cyanide		
	Carbonate		
	Nitrate		
	Nitrite		
	Phosphate		
	Sulphate		
	Sulphide		
Materials of	interest for - otance criteria:		
wadto addo	stanos entena.	(0(1)	- ()
		(%wt)	Type(s) and comment
	Combustible metals		
	Low flash point liquids		
	Explosive materials		
	Phosphorus		
	Hydrides		
	Biological etc. materials		
	Biodegradable materials	0	
	Putrescible wastes		
	Non-putrescible wastes		
	Corrosive materials		
	Pyrophoric materials		
	Generating toxic gases		
	Reacting with water		
	Higher activity particles		
	Soluble solids as bulk chemical compounds		
	substances / - ous pollutants:		
		(%wt)	Type(s) and comment
	Acrylamide	, 7	· · · · · · · · · · · · · · · · · · ·
	Benzene		
	Chlorinated solvents		
	Formaldehyde		
	Organometallics		
	Phenol		

Styrene				
Tri-butyl phosphate	•			
Other organophosphates				
Vinyl chloride				
Arsenic				
Barium				
Boron	. 0			
Boron (in Boral)				
Boron (non-Boral)				
Cadmium				
Caesium				
Selenium				
Chromium				
Molybdenum				
Thallium				
Tin				
Vanadium				
Mercury compounds				
Others				
Electronic Electrical Equipment (E	EEE)			
EEE Type 1				
EEE Type 2				
EEE Type 3				
EEE Type 4				
EEE Type 5				
Complexing agents (%wt): No				
	(%wt))	Type(s) and comment	
EDTA				
DPTA				
NTA				
Polycarboxylic acids				
Other organic complexants				
Total complexing agents	0			
Potential for the waste to No. In & of itse contain discrete items:		wa	ste stream may include DIs (notably any stainles	s

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)		
Incineration	Off-site	100.0
Solidification		
Decontamination		
Metal treatment		
Size reduction		
Decay storage		
Recyling / reuse		
Other / various		
None		

Comment on planned treatments:

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known	100.0	2.1

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Roule			2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-			Will be realised		

Waste Packaging for Disposal: (Not applicable to this waste stream)

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding)			. 5
Other			

Other information: -

Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream)

Container voidage:

Waste Characterisation

Form (WCH):

Waste consigned for disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation:

Bounding cuboidal volume:

Inaccessible voidage: -

Other information:

RADIOACTIVITY

Source: The iodine filters were designed to remove I-131 and particulate from the reactor gas

circuit in case of an incident. The charcoal was used as a filter medium in the iodine filters.

Uncertainty: -

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

Samples were taken of material that had been previously removed during the life of the plant to inform a LLWR WCH. This stored material has been consigned (2011) but the WCH data has been used to inform the assessment of the material remaining within the

plant - decayed to 2027 (17 years from WCH activity reference date).

Other information:

Mean radioactivity, TBq/m³					Mean radioactivity, TBq/m³				
Nuclide	Waste at	Bands and	Future	Bands and	Nuclido	Waste at	Bands and	Future	Bands and
	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code
H 3			7.04E-05	CC 2	Gd 153				8
Be 10			4.005.05	8	Ho 163				8
C 14			1.36E-05	CC 2	Ho 166m				8
Na 22				8	Tm 170				8
Al 26			4.075.00	8	Tm 171				8
CI 36			1.87E-06	CC 2	Lu 174				8
Ar 39				8	Lu 176				8
Ar 42				8	Hf 178n				8
K 40				8	Hf 182				8
Ca 41				8	Pt 193 TI 204				8 8
Mn 53				8	Pb 205				8
Mn 54 Fe 55			8.86E-09	8 CC 2	Pb 203				8
Co 60			4.61E-08	CC 2	Bi 208				8
Ni 59			4.01E-06		Bi 210m				8
Ni 63			3.02E-07	8 CC 2	Po 210				8
Zn 65			3.02L-07		Ra 223				8
Se 79				8 8	Ra 225				8
Se 79 Kr 81				8	Ra 226				8
Kr 85				8	Ra 228				8
Rb 87				8	Ac 227				8
Sr 90				8	Th 227				8
Zr 93				8	Th 228				8
Nb 91				8	Th 229				8
Nb 92				8	Th 230				8
Nb 93m				8	Th 232				8
Nb 94				8	Th 234				8
Mo 93				8	Pa 231				8
Tc 97				8	Pa 233				8
Tc 99			2.04E-06	CC 2	U 232				8
Ru 106			2.0.2.00	8	U 233				8
Pd 107				8	U 234				8
Ag 108m				8	U 235				8
Ag 110m				8	U 236				8
Cd 109				8	U 238				8
Cd 113m				8	Np 237				8
Sn 119m				8	Pu 236				8
Sn 121m				8	Pu 238				8
Sn 123				8	Pu 239				8
Sn 126				8	Pu 240				8
Sb 125				8	Pu 241				8
Sb 126				8	Pu 242				8
Te 125m				8	Am 241				8
Te 127m	1			8	Am 242m	1			8
l 129				8	Am 243				8
Cs 134				8	Cm 242				8
Cs 135	1			8	Cm 243	1			8
Cs 137	1		5.79E-08	CC 2	Cm 244	1			8
Ba 133				8	Cm 245				8
La 137	1			8	Cm 246	1			8
La 138	1			8	Cm 248	1			8
Ce 144				8	Cf 249				8
Pm 145	1			8	Cf 250	1			8
Pm 147	1			8	Cf 251	1			8
Sm 147				8	Cf 252				8
Sm 151	1			8	Other a	1			
Eu 152				8	Other b/g				
Eu 154	•		i e	0	Total a	0		0	
Eu 155				8	Total b/g	ő		8.83E-05	CC 2

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10

D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in

mean radioactivity.

Code

- 1 Measured activity
- 2 Derived activity (best estimate)
- 3 Derived activity (upper limit)
- 4 Not present
- 5 Present but not significant
- 6 Likely to be present but not assessed
- 7 Present in significant quantities but not determined
- 8 Not expected to be present in significant quantity