SITE	Sellafield			
SITE OWNER	Nuclear Decommissioning Authority			
SHE OWNER	Nuclear Decommissioning Autionty			
WASTE CUSTODIAN	Sellafield Limited			
WASTE TYPE	ILW			
Is the waste subject to Scottish Policy:	No			
WASTE VOLUMES		Reported		
Stocks:	At 1.4.2022	~3203.0 m ³		
Total future arisings:		0 m³		
Total waste volume:		3203.0 m ³		
Comment on volumes:	Arisings have ceased. "Stock volum Cladding Silo - Retrievals Feed Spe Oct 2020. The feed specification ind observed volume of 3203m ³ .	cification, RP/PFCS-PROG/PR	OJ/00001/E, A Khan,	
Uncertainty factors on	Stock (upper): x 1.18	Arisings (upper)	х	
volumes:	Stock (lower): x 1.0	Arisings (lower)	х	
WASTE SOURCE	The wastes have predominately aris operations carried out between 195 Cladding Silo - Retrievals Feed Spe Aug 2020.	I and 1965. Source of informat	ion is the Pile Fuel	

PHYSICAL CHARACTERISTICS

General description:	The waste contains swarf, principally aluminium and magnesium, from early reprocessing programmes. Other materials include graphite, organics, steel, ash, gravel and uranium residues. There may be some items that require special handling. The waste has been stored in a silo for ~60 years. Whilst the silo is nominally dry, it is known to be damp in parts with potential for discrete volumes of free liquor. The extent of any physical/chemical changes will be established on retrieval.
Physical components (%wt):	Metal swarf, graphite, organics (e.g. wood, cloth, paper), scrap metal, ash, lead and uranium, as follows: Magnesium alloy swarf and magnesium hydroxide (assumed 750te) (36.7%), aluminium swarf (5.3%), graphite (16.47%), uranium (0.54%), gravel (6.64%), lead (1.96%), scrap metal - predominantly steel (28.35%), others - organics, ash, filters, etc. (3.96%).
Sealed sources:	The waste contains sealed sources. A number of isotope cartridges have been confirmed to have been disposed to the Silo. The radioactivity in these cartridges will have decayed away to negligible levels.
Bulk density (t/m ³):	0.62
Comment on density:	The quoted value is the average bulk density of the undisturbed waste in the silo (observed waste volume and 2000te waste mass used). Upon retrieval the average bulk density is expected to decrease. The retrieved volume (3790m3) is expected to have an average bulk density of 0.53 t/m ³ . Should the waste mass be 1800te then in silo = 0.56 t/m ³ and retrieved = 0.48 t/m ³

CHEMICAL COMPOSITION

General description and components (%wt):	Metal swarf, graphite, organics (e.g. wood, cloth, paper), scrap metal, ash, lead and uranium, as follows: Magnesium alloy swarf and magnesium hydroxide (assumed 750te) (36.7%), aluminium swarf (5.3%), graphite (16.47%), uranium (0.54%), gravel (6.64%), lead (1.96%), scrap metal - predominantly steel (28.35%), others - organics, ash, filters, etc. (3.96%).
Chemical state:	Alkali
Chemical form of radionuclides:	 H-3: Present as part of spent fuel components (predominantly trapped as gas within spent fuel). C-14: Present as part of spent fuel components (trapped as gas within spent fuel components). Cl-36: Present as part of spent fuel components (trapped as gas within spent fuel components). Se-79: Present as part of spent fuel components (fission product within spent fuel).
	2022 Inventory

WASTE STREAM	2D07 Pile Fu	el Clado	ding and Miscellaneous Solid Wa	aste
	spent fuel). I-129: Present as pa Ra: Present within s Th: Present within s U: Uranium metal a Np: Present within s	art of spen pent fuel. pent fuel. nd uraniur pent fuel.	nt fuel components (associated with fission t fuel components (fission product within s n corrosion products (associated with spe fuel and associated with Plutonium Conta	spent fuel). nt fuel).
Metals and alloys (%wt):	Approximately 28.34% of the waste is present as scrap metal or cans. It is unknown how much is present as sheet. A normal limit of between 460 mm and 610 mm in any dimension was applied to items disposed in the Silo. However there are known to be many items larger than this. There are many metal rods, some up to 7 metres long. Approximately 50 x 200 litre drums. There are sections of aluminium decking up to 2.8 m long and 0.6 m wide, totalling 15 m in length. There are 4 sections of steel cover plate measuring approximately 1830 mm x 915 mm x 5 mm and 2 folded aluminium cover plates originally measuring 1830 mm x 1830 mm x 5 mm. There will also be sections of mild steel plate up to 1 m x 1 m, totalling 2 plates (1.8 m x 2.4 m) per compartment			
		(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless stee	əl	Р		
Other ferrous	metals	28.3		
Iron		Р		
Aluminium		5.2		
Beryllium		0		
Cobalt		0		
Copper		NE		
Lead		2.0		
Magnox/Magr	nesium	36.7		3.8
Nickel		TR		
Titanium		NE		
Uranium		0.54	Predominantly depleted/natural uranium.	0.2
Zinc		NE		
-	nium			
Other metals.		NE		
Organics (%wt):	paper. Rubber may total listed as "other	be preser organics"	of organics and cellulosic materials includi at in small amounts. Detailed organics inve . Most of the plastics are likely to be Bake here is photographic evidence of more mo	entory uncertain, lite, high density
		(%wt)	Type(s) and comment	% of total C14 activity
Total cellulosi	ics	Р		Convity
Paper, cotte	on	Ρ		

Г
Ρ
NE
NE
NE
NE
0
NE
NE

WASTE STREAM 2D07 Pile Fuel Cladding and Miscellaneous Solid Waste

Non-halogenated rubber	NE	
Hydrocarbons	Р	
Oil or grease	Р	
Fuel	NE	
Asphalt/Tarmac (cont.coal tar)	NE	
Asphalt/Tarmac (no coal tar)	0	
Bitumen	NE	
Others		
Other organics	1.9	grouted and pile filters

Other materials (%wt):

The gravel at bottom of silo compartments is listed as rubble. Fibreglass is present in pile filters. Incinerator ash (2.4%). Controls have been put in place for asbestos, which maybe have been disposed in the form of lagging, etc. Amounts/types not known.

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	NE		
Inorganic sludges and flocs	Р		
Soil	NE		
Brick/Stone/Rubble	6.8		
Cementitious material	NE		
Sand	Р		
Glass/Ceramics	Р		
Graphite	16.5		96.1
Desiccants/Catalysts	NE		
Asbestos	Р		
Non/low friable	NE		
Moderately friable	NE		
Highly friable	NE		
Free aqueous liquids	Р		
Free non-aqueous liquids	Р		
Powder/Ash	~2.1		

Inorganic anions (%wt):

If present, the listed anions are likely to be present only in small or trace quantities.

Type(s) and comment

	(%wt)
Fluoride	NE
Chloride	NE
lodide	NE
Cyanide	NE
Carbonate	NE
Nitrate	NE
Nitrite	NE
Phosphate	NE
Sulphate	NE
Sulphide	NE

2022 Inventory

WASTE STREAM	2D07 Pile Fu	el Clado	ding and Miscellaneous Solid Waste	
Materials of interest for waste acceptance criteria: The waste contains uranium, magnesium, graphite, aluminium and combustible organics. It may also contain uranium hydride and alkali metals. During retrievals, disturbed magnox may come into contact with, and react with, free water to produce hydrogen gas. There may also be a very small number of sealed cans (<30) containing either uranium hydride or sodium, which may present an ignition source.				
		(%wt)	Type(s) and comment	
Combustible	metals	Ρ	Approx 36.5% w/w of the waste is Magnesium alloy. A small number of canned items may contain sodium or uranium hydride.	
Low flash poin	nt liquids	Р	Expected to be trace amounts.	
Explosive ma	terials	0		
Phosphorus		0		
Hydrides		Ρ	Very small amounts of uranium hydride in sealed cans.	
Biological etc	. materials	0		
Biodegradable	e materials	Р	Approximately 1.5% w/w of the waste is organic.	
Putrescible	wastes	Р		
Non-putres	cible wastes			
Corrosive ma	terials	0		
Pyrophoric ma	aterials	Р	Very small amounts of sodium and uranium hydride.	
Generating to	xic gases	0		
Reacting with	water	Р	Magnox reacts with water to from hydrogen.	
Higher activity	/ particles	Ρ	10% w/w of the silo waste is expected to be particulate.	
	as bulk chemical	0		

Hazardous substances / non hazardous pollutants:

Lead is present and the presence of asbestos is suspected.

	(%wt)	Type(s) and comment
Acrylamide	NE	
Benzene	NE	
Chlorinated solvents	NE	
Formaldehyde	NE	
Organometallics	NE	
Phenol	Р	Present within disposed plastics.
Styrene	NE	
Tri-butyl phosphate	NE	
Other organophosphates	NE	
Vinyl chloride	Р	Present as PVC.
Arsenic	NE	
Barium	Р	As Barium 137.
Boron	NE	
Boron (in Boral)	NE	
Boron (non-Boral)	NE	
Cadmium	NE	

WASTE STREAM

2D07

Pile Fuel Cladding and Miscellaneous Solid Waste

Caesium	Ρ
Selenium	NE
Chromium	Ρ
Molybdenum	Ρ
Thallium	NE
Tin	Р
Vanadium	NE
Mercury compounds	NE
Others	
Electronic Electrical Equipment (EEE)	
EEE Type 1	0
EEE Type 2	Ρ
EEE Type 3	Ρ
EEE Type 4	NE
EEE Type 5	NE
agents (%wt): Not vet determined	

As Caesium 137

Present in disposed stainless steel .

Potentially present in disposed stainless steel.

Present in disposed scrap metal.

May be present in scrap steel.

Complexing agents (%wt): Not yet determined

	(%wt)	Type(s) and comment
EDTA	NE	
DPTA	NE	
NTA	NE	
Polycarboxylic acids	NE	
Other organic complexants		
Total complexing agents	NE	
or the waste to Yes.		

Potential for the waste to contain discrete items:

PACKAGING AND CONDITIONING

Conditioning method:	Waste will be placed in 3m ³ boxes for interim storage and subsequent conditioning and packaging.
Plant Name:	Treatment options and plants under development.
Location:	Sellafield.
Plant startup date:	Under review.
Total capacity (m³/y incoming waste):	-
Target start date for packaging this stream:	-
Throughput for this streat (m ³ /y incoming waste):	am -
Other information:	

Other information:

Likely container type:	Container	Waste packaged (%vol)	Waste loading (m ³)	Payload (m³)	Number of packages
	Sellafield enhanced 3m ³ box	100.0	1.438	2.19	2228

WASTE STREAM 2	2D07 Pile Fuel Cladding and Miscellaneous Solid Waste					
Likely container type comment:	-					
Range in container waste volume:	The waste loading has been calculated based on an estimated 2,227 final packages being produced at the PFCS Treatment Plant (note - that this also includes 111 waste containers for residuals from the silos and 12 waste containers being exported to EPS3). The actual waste container loading is uncertain and will depend greatly on achievable packing fractions and filling efficiencies currently assumed to be 80% with 5% of this volume being taken up by secondary ILW. (CA/PFCSPROG/PROJ/00024. PFCS Programme PSWP Supporting Calculations. B Chapman. Feb '22)					
Other information on containers:	Stainless steel. Interim waste container will be re-used for disposal if possible.					
Likely conditioning matrix: Other information:	Not Specified					
Conditioned density (t/m ³): Conditioned density comment:	NE -					
Other information on conditioning:	-					
Opportunities for alternative disposal routing:	Not yet determined					
Baseline Opp Management Route Manage	Estimated ortunity Stream Date that Opportunity ment Route volume (%) Opportunity Confidence Comment will be realised					

RADIOACTIVITY	
Source:	The waste contains contaminated fuel cladding, residual uranium fuel from decanning operations and reactor structural components. The main sources of radioactivity are Cs-137, Sr-90, Pu-239, C14, Pu-241.
Uncertainty:	Actual Silo wall dose readings have been used to calculate the specific activities. The underlying assumptions in the calculation lead to uncertainties. These uncertainies are expected to be less than an order of magnitude.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	Specific activities have been predominately based on Silo dose reading and estimates of plutonium associated with PCM. All specific activies have been decayed to expected values in 2022. (CA/PFCS-PROG/PROC/00004/C, Best Estimate of PFCS Waste Specific Activity, R Fisher, March 2018)
Other information:	-

WASTE STREAM 2D07 Pile Fuel Cladding and Miscellaneous Solid Waste

	Mean radioactivity, TBq/m ³				Mean radioactivity, TBq/m³					
	Waste at	Bands and	Future	Bands and		Waste at	Bands and	Future	Bands and	
Nuclide	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code	
H 3	4.24E-05	CC 1			Gd 153					
Be 10	2.27E-08	CC 1			Ho 163	7.17E-14	CC 1			
C 14	4.71E-03	CC 1			Ho 166m	1.01E-10	CC 1			
Na 22					Tm 170					
AI 26					Tm 171	4.88E-16	CC 1			
CI 36	1.14E-06	CC 1			Lu 174					
Ar 39					Lu 176					
Ar 42					Hf 178n					
K 40					Hf 182					
Ca 41	1.06E-05	CC 1			Pt 193					
Mn 53	1.51E-15	CC 1			TI 204					
Mn 54					Pb 205					
Fe 55	2.75E-08	CC 1			Pb 210	8.58E-11	CC 1			
Co 60	1.17E-04	CC 1			Bi 208	0.002 11	001			
Ni 59	4.56E-05	CC 1			Bi 210m					
Ni 63	4.50E-03	CC 1			Po 210	8.32E-11	CC 1			
Zn 65	0.05Ľ-05	00 1			Ra 223	9.59E-10	CC 1			
Se 79	1 525 07	CC 1			Ra 225 Ra 225		CC 1			
	1.52E-07	CC 1				1.83E-13				
Kr 81	1.62E-15				Ra 226	2.43E-10	CC 1			
Kr 85	7.15E-04	CC 1			Ra 228	7.26E-16	CC 1			
Rb 87	2.74E-12	CC 1			Ac 227	9.63E-10	CC 1			
Sr 90	5.70E-02	CC 1			Th 227	9.47E-10	CC 1			
Zr 93	5.07E-06	CC 1			Th 228	6.35E-10	CC 1			
Nb 91					Th 229	1.83E-13	CC 1			
Nb 92					Th 230	2.07E-08	CC 1			
Nb 93m	3.82E-06	CC 1			Th 232	2.19E-15	CC 1			
Nb 94	1.35E-10	CC 1			Th 234	4.20E-05	CC 1			
Mo 93	2.06E-09	CC 1			Pa 231	2.04E-09	CC 1			
Tc 97	2.70E-18	CC 1			Pa 233	1.61E-07	CC 1			
Tc 99	3.84E-05	CC 1			U 232	6.17E-10	CC 1			
Ru 106	5.24E-18	CC 1			U 233	5.33E-11	CC 1			
Pd 107	1.37E-07	CC 1			U 234	4.14E-05	CC 1			
Ag 108m	1.76E-11	CC 1			U 235	1.76E-06	CC 1			
Ag 110m					U 236	8.25E-07	CC 1			
Cd 109					U 238	4.20E-05	CC 1			
Cd 113m	5.07E-08	CC 1			Np 237	1.61E-07	CC 1			
Sn 119m					Pu 236	1.16E-14	CC 1			
Sn 121m	6.58E-07	CC 1			Pu 238	4.76E-05	CC 1			
Sn 123					Pu 239	1.28E-02	CC 1			
Sn 126	1.28E-06	CC 1			Pu 240	2.41E-03	CC 1			
Sb 125	1.01E-08	CC 1			Pu 241	3.50E-03	CC 1			
Sb 126	1.79E-07				Pu 242	5.79E-08	CC 1			
Te 125m	2.53E-09	CC 1			Am 241	1.67E-03	CC 1			
Te 127m					Am 242m	1.88E-07	CC 1			
I 129	7.22E-08	CC 1			Am 243	2.08E-08	CC 1			
Cs 134	6.42E-11	CC 1			Cm 242	1.55E-07	CC 1			
Cs 135	1.93E-06	CC 1			Cm 243	2.96E-09	CC 1			
Cs 137	7.06E-02	CC 1			Cm 244	1.11E-08	CC 1			
Ba 133	2.41E-13	CC 1			Cm 245	5.71E-13	CC 1			
La 137	5.88E-14	CC 1			Cm 246	9.28E-15	CC 1			
La 137	8.70E-17	CC 1			Cm 248	5.200-13				
Ce 144	0.702-17				Cfi 240 Cf 249					
Ce 144 Pm 145	2 00E 17	CC 1			Cf 249 Cf 250					
	2.90E-17									
Pm 147	2.12E-07	CC 1			Cf 251					
Sm 147	1.15E-12	CC 1			Cf 252					
Sm 151	2.49E-03	CC 1			Other a					
Eu 152	4.67E-07	CC 1			Other b/g	4 74 5 65	00 f	_		
Eu 154	8.28E-06	CC 1			Total a	1.71E-02	CC 1	0		
Eu 155	2.78E-06	CC 1			Total b/g	1.43E-01	CC 1	0		

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3 C a factor of 10

D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity