WASTE STREAM 2D113 Uranium Plants Initial/Interim Decommissioning: **Processing Plants** SITE Sellafield SITE OWNER Nuclear Decommissioning Authority WASTE CUSTODIAN Sellafield Limited WASTE TYPE LLW Is the waste subject to Scottish Policy: No **WASTE VOLUMES** | WASIL VOLUMES | | Reported | |------------------------|----------------------|----------------------| | Stocks: | At 1.4.2022 | 0 m³ | | Future arisings - | 1.4.2022 - 31.3.2023 | 0 m³ | | | 1.4.2023 - 31.3.2024 | 0 m³ | | | 1.4.2024 - 31.3.2025 | 0 m³ | | | 1.4.2025 - 31.3.2029 | 0 m³ | | | 1.4.2029 - 31.3.2046 | ~639.5 m³ | | | 1.4.2046 - 31.3.2054 | 0 m³ | | | 1.4.2054 - 31.3.2066 | ~344.8 m³ | | | 1.4.2066 - 31.3.2120 | 0 m³ | | Total future arisings: | | 984.3 m³ | | Total waste volume: | | 984.3 m ³ | Comment on volumes: Arisings are in line with current decommissioning programmes and strategy. Waste within this waste stream is generated from a number of decommissioning projects which will commence at a future date. As a result of this, minimal characterisation of waste volumes and fingerprints has been carried out and hence there is a large uncertainty in the potential arisings. Preliminary assessments indicate that the volumes may vary from -50% to +300% for LLW. Uncertainty factors on volumes: Stock (upper): x Stock (lower): x Arisings (upper) x 4.0 Arisings (lower) x 0.5 **WASTE SOURCE** Dismantling of uranium process plants. #### PHYSICAL CHARACTERISTICS General description: Plant and equipment, instruments and fittings, internal building fabric, soft waste ie. rubber, PVC, paper. Most items size reduced in-situ. Some large items may be present. Physical components (%vol): Vessels, tanks (24%), pipework, valves and fittings (17%), plant and equipment (34%), electrical cabling, hardware and instruments (2.5%), internal fabric and furniture (7%), secondary steelwork (0.5%), soft waste (15%). Sealed sources: The waste does not contain sealed sources. Bulk density (t/m³): ~0.5 Comment on density: Density stated is an average for raw LLW at the workface. ### **CHEMICAL COMPOSITION** General description and components (%wt): Stainless Steel (44%), mild steel (30%), copper (8%), aluminium (0.5%), zinc (<0.05%), plastic (14%), rubber (2%), cellulose (1%), glass (0.5%). Percentages are by volume. Chemical state: Neutral Chemical form of radionuclides: H-3: The chemical form of tritium has not been determined. C-14: The chemical form of carbon-14 has not been determined. CI-36: The chlorine content is insignificant. Se-79: The selenium content is insignificant. Tc-99: The chemical form of technetium has not been determined. I-129: The iodine content is insignificant. Ra: The chemical form of radium has not been determined. Th: The chemical form of thorium has not been determined. U: The chemical form of uranium has not been determined. Np: The chemical form of neptunium has not been determined. Pu: The chemical form of plutonium has not been determined. Metals and alloys (%wt): Some sheet metal present (~30%), bulk metal (70%). | | (%wt) | Type(s) / Grade(s) with proportions | % of total C14 activity | |----------------------|-------|---|-------------------------| | Stainless steel | 44.0 | The most commonly used stainless steel is 304L. | · | | Other ferrous metals | 30.0 | | | | Iron | ~0 | | | | Aluminium | 0.50 | | | | Beryllium | 0 | | | | Cobalt | 0 | | | | Copper | 8.0 | | | | Lead | TR | | | | Magnox/Magnesium | 0 | | | | Nickel | 0 | | | | Titanium | 0 | | | | Uranium | 0 | | | | Zinc | <0.05 | | | | Zircaloy/Zirconium | 0 | | | | Other metals | 0 | | | | | | | | Organics (%wt): Other materials (%wt): The waste contains PVC and other plastics, small amounts of rubber and cellulose. Percentages are by volume. PVC oversuits, Windscale suits, waste bags, rubber gloves. | | (%wt) | Type(s) and comment | % of total C14 activity | |--------------------------------|-------|---------------------|-------------------------| | Total cellulosics | 1.0 | | acarray | | Paper, cotton | TR | | | | Wood | ~1.0 | | | | Halogenated plastics | 10.5 | | | | Total non-halogenated plastics | 3.5 | | | | Condensation polymers | 1.8 | | | | Others | 1.8 | | | | Organic ion exchange materials | 0 | | | | Total rubber | 2.0 | | | | Halogenated rubber | Р | | | | Non-halogenated rubber | Р | | | | Hydrocarbons | | | | | Oil or grease | | | | | Fuel | | | | | Asphalt/Tarmac (cont.coal tar) | | | | | Asphalt/Tarmac (no coal tar) | | | | | Bitumen | | | | | Others | | | | | Other organics | 0 | | | | | (%wt) | Type(s) and comment | % of total C14 activity | |---|--------------|--|--------------------------| | Inorganic ion exchange materials | 0 | | | | Inorganic sludges and flocs | TR | | | | Soil | 0 | | | | Brick/Stone/Rubble | TR | | | | Cementitious material | TR | | | | Sand | 0 | | | | Glass/Ceramics | ~0.50 | | | | Graphite | 0 | | | | Desiccants/Catalysts | | | | | Asbestos | Р | The volume and type of asbestos has not been determined. | | | Non/low friable | | | | | Moderately friable | | | | | Highly friable | | | | | Free aqueous liquids | 0 | | | | Free non-aqueous liquids | >0 | | | | Powder/Ash | 0 | | | | Inorganic anions (%wt): Inorganic anions a | re not expe | ected to be present. | | | | (%wt) | Type(s) and comment | | | Fluoride | 0 | | | | Chloride | 0 | | | | lodide | 0 | | | | Cyanide | 0 | | | | Carbonate | 0 | | | | Nitrate | 0 | | | | Nitrite | 0 | | | | Phosphate | 0 | | | | Sulphate | 0 | | | | Sulphide | 0 | | | | Materials of interest for waste acceptance criteria: Putrescible waste roof cladding. | is organic n | natter. Asbestos is cement cladding, s | heets, ceiling tiles and | | | (%wt) | Type(s) and comment | | | Combustible metals | 0 | | | | Low flash point liquids | 0 | | | | Explosive materials | 0 | | | | Phosphorus | 0 | | | | Hydrides | 0 | | | | Biological etc. materials | 0 | | | | Biodegradable materials | TR | | | | Putrescible wastes | TR | Trace. | | | Non-nutrescible wastes | 0 | | | 2022 Inventory | | Corrosive materials | 0 | | |--------------|---|-----------|---------------------| | | Pyrophoric materials | 0 | | | | Generating toxic gases | 0 | | | | Reacting with water | 0 | | | | Higher activity particles | 0 | | | | Soluble solids as bulk chemical compounds | 0 | | | Hazardous su | | ce quanti | ties. Asbestos. | | | | (%wt) | Type(s) and comment | | | Acrylamide | , , | ,, ,, | | | Benzene | | | | | Chlorinated solvents | | | | | Formaldehyde | | | | | Organometallics | | | | | Phenol | | | | | Styrene | | | | | Tri-butyl phosphate | | | | | Other organophosphates | | | | | Vinyl chloride | | | | | Arsenic | | | | | Barium | | | | | Boron | | | | | Boron (in Boral) | | | | | Boron (non-Boral) | | | | | Cadmium | | | | | Caesium | | | | | Selenium | | | | | Chromium | | | | | Molybdenum | | | | | Thallium | | | | | Tin | | | | | Vanadium | | | | | Mercury compounds | | | | | Others | | | | | Electronic Electrical Equipment (EEE) | | | | | EEE Type 1 | | | | | EEE Type 2 | | | | | EEE Type 3 | | | | | EEE Type 4 | | | | | EEE Type 5 | | | | | (%wt) | Type(s) and comment | |---------------------------|-------|---------------------| | EDTA | | | | DPTA | | | | NTA | | | | Polycarboxylic acids | | | | Other organic complexants | | | | Total complexing agents | | | Potential for the waste to contain discrete items: Complexing agents (%wt): Yes. Tools and steel fabrications may be present in this waste. ### TREATMENT, PACKAGING AND DISPOSAL No Planned on-site / off-site treatment(s): | Treatment | On-site /
Off site | Stream volume % | |-----------------------|-----------------------|-----------------| | Low force compaction | | | | Supercompaction (HFC) | | | | Incineration | Off-site | ~15.0 | | Solidification | | | | Decontamination | | | | Metal treatment | Off-site | ~68.0 | | Size reduction | | | | Decay storage | | | | Recyling / reuse | | | | Other / various | | | | None | | ~17.0 | Comment on planned treatments: Although there are no firm plans in place, based on current experience we have assumed the treatment methods set out in the table for the purposes of the 2022 UK Inventory. For Inventory purposes, it is assumed that incineration will be extended from similar waste streams. # **Disposal Routes:** | Stream volume % | Disposal
density t/m3 | |-----------------|----------------------------| | ~17.0 | 1.2 | | | | | | | | ~15.0 | 0.14 | | ~68.0 | 1.4 | | | | | | | | | | | | volume %
~17.0
~15.0 | Classification codes for waste expected to be consigned to a landfill facility: # Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above): | Disposal Route | Stream volume % | | | | | |--|-----------------|---------|---------|--|--| | Disposal Route | 2022/23 | 2023/24 | 2024/25 | | | | Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known | | | | | | Opportunities for alternative disposal routing: Not yet determined Baseline Opportunity Stream Date that Opportunity Management Route Management Route volume (%) We stimated Date that Opportunity Opportunity Confidence will be realised #### **Waste Packaging for Disposal:** | Container | Stream volume % | Waste loading m ³ | Number of packages | |--|-----------------|------------------------------|--------------------| | 1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other | ~17.0 | ~15.7 | 11 | Other information: ### Waste Planned for Disposal at the LLW Repository: Container voidage: Voidage will be highly variable dependent on feed material from multiple buildings. Waste Characterisation Form (WCH): It is not yet determined if the waste meets LLWR's Waste Acceptance Criteria (WAC). This waste stream covers future decommissioning projects. Waste from future projects will require WCHs prior to acceptance for disposal to the LLWR. Waste consigned for disposal to LLWR in year of generation: Yes. Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream) Stream volume (%): Waste stream variation: Bounding cuboidal volume: Inaccessible voidage: - Other information: - #### **RADIOACTIVITY** Source: The main sources of activity are uranium isotopes. Uncertainty: Waste within this waste stream is generated from a number of decommissioning projects which will commence at a future date. The uncertainties quoted for each nuclide represent both the uncertainty in quantification without detailed sampling and the likely variation of nuclide in different building consigned wastes under this waste stream. It is exceptionally unlikely that all the waste included in this waste stream will have the same variation in nuclide fingerprint. Also activity levels will depend on degree of decontamination achieved. Definition of total alpha and total beta/gamma: Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'. Measurement of radioactivities: Future arisings activities are based on actual activities of similar recent disposals. Other information: Other alpha not specified. Other beta/gamma includes Co58 1.22E-10 TBg/m³, Sr89 9.29E- 12 TBq/m³, Zr95 1.55E-8 TBq/m³, Nb95 1.38E-8 TBq/m³ and Ru103 5.39E-9 TBq/m³. Nuclides making up remaining "other beta/gamma" not specified. | | Mean radioactivity, TBq/m³ | | | | Mean radioactivity, TBq/m³ | | | | | |-------------------|----------------------------|-------------------|-----------------|-------------------|----------------------------|-------------------|-------------------|-----------------|-------------------| | Nuclide | Waste at 1.4.2022 | Bands and
Code | Future arisings | Bands and
Code | Nuclide | Waste at 1.4.2022 | Bands and
Code | Future arisings | Bands and
Code | | H 3 | | | 6.60E-09 | CC 2 | Gd 153 | | | <u> </u> | | | Be 10 | | | | 8 | Ho 163 | | | | | | C 14 | | | 3.74E-10 | CC 2 | Ho 166m | | | | | | Na 22 | | | 0.7.12.10 | 00 2 | Tm 170 | | | | | | Al 26 | | | | | Tm 171 | | | | | | CI 36 | | | | 8 | Lu 174 | | | | | | Ar 39 | | | | · · | Lu 176 | | | | | | Ar 42 | | | | | Hf 178n | | | | | | K 40 | | | | | Hf 182 | | | | | | Ca 41 | | | | 8 | Pt 193 | | | | | | Mn 53 | | | | | TI 204 | | | | | | Mn 54 | | | 1.39E-09 | CC 2 | Pb 205 | | | | | | Fe 55 | | | 1.37E-09 | CC 2 | Pb 210 | | | | 8 | | Co 60 | | | 1.71E-08 | CC 2 | Bi 208 | | | | | | Ni 59 | | | 2 00 | 8 | Bi 210m | | | | | | Ni 63 | | | 5.37E-11 | CC 2 | Po 210 | | | | 8 | | Zn 65 | | | 5.07E-10 | CC 2 | Ra 223 | | | | | | Se 79 | <u> </u>
 | | 3.07 L 10 | 8 | Ra 225 | | | | | | Kr 81 | | | | O | Ra 226 | | | 5.58E-11 | CC 2 | | Kr 85 | | | | | Ra 228 | | | | | | Rb 87 | | | | | Ac 227 | | | | | | Sr 90 | | | 6.27E-07 | CC 2 | Th 227 | | | | | | Zr 93 | | | 0.27 2 07 | 8 | Th 228 | | | | | | Nb 91 | | | | O | Th 229 | | | | 8 | | Nb 92 | | | | | Th 230 | | | | 8 | | Nb 93m | | | | 8 | Th 232 | | | 5.80E-08 | CC 2 | | Nb 94 | | | | 8 | Th 234 | | | 0.002 00 | 00 - | | Mo 93 | | | | 8 | Pa 231 | | | | 8 | | Tc 97 | | | | 0 | Pa 233 | | | | Ü | | Tc 99 | | | 5.57E-09 | CC 2 | U 232 | | | | | | Ru 106 | | | 8.25E-08 | CC 2 | U 233 | | | | 8 | | Pd 107 | | | 0.23L-00 | 8 | U 234 | | | 1.80E-07 | CC 2 | | Ag 108m | | | | 8 | U 235 | | | 7.57E-08 | CC 2 | | Ag 100m | | | | 0 | U 236 | | | 1.62E-08 | CC 2 | | Cd 109 | | | | | U 238 | | | 4.65E-07 | CC 2 | | Cd 103
Cd 113m | | | | | Np 237 | | | 4.54E-08 | CC 2 | | Sn 119m | | | | | Pu 236 | | | 1.012 00 | 00 2 | | Sn 121m | | | | 8 | Pu 238 | | | 5.62E-08 | CC 2 | | Sn 123 | | | | O | Pu 239 | | | 9.77E-08 | CC 2 | | Sn 126 | | | | 8 | Pu 240 | | | 8.22E-08 | CC 2 | | Sb 125 | | | | O | Pu 241 | | | 2.17E-06 | CC 2 | | Sb 126 | | | | | Pu 242 | | | 2.172 00 | 8 | | Te 125m | | | | | Am 241 | | | 8.93E-08 | CC 2 | | Te 123m | | | | | Am 242m | | | 0.93L-00 | 8 | | I 129 | | | | 8 | Am 243 | | | | 8 | | Cs 134 | | | 3.25E-08 | CC 2 | Cm 242 | | | 2.79E-11 | CC 2 | | Cs 134
Cs 135 | | | 3.23L-00 | 8 | Cm 242 | | | 2.136-11 | 8 | | Cs 135 | | | 5.97E-07 | CC 2 | Cm 243 | | | 1.79E-10 | CC 2 | | Ba 133 | | | 3.37 L-07 | 00 2 | Cm 244
Cm 245 | | | 1.735-10 | | | La 137 | | | | | Cm 245
Cm 246 | | | | 8
8 | | La 137
La 138 | | | | | Cm 248 | | | | U | | Ce 144 | | | 3.42E-08 | CC 2 | Cff 249 | | | | | | Ce 144
Pm 145 | | | J.42E-UO | 00 2 | Cf 249
Cf 250 | | | | | | Pm 145
Pm 147 | | | 7.95E-09 | CC 2 | Cf 250
Cf 251 | | | | | | | | | 7.95⊑-09 | 00 2 | | | | | | | Sm 147
Sm 151 | | | 4.23E-11 | CC 2 | Cf 252
Other a | | | A 77E 10 | CC 2 | | | | | 4.23E-11 | | | | | 4.77E-10 | | | Eu 152 | | | 0.155.40 | 8 | Other b/g | _ | | 3.60E-08 | CC 2 | | Eu 154 | | | 8.15E-10 | CC 2 | Total a | 0 | | 1.17E-06 | CC 2 | | Eu 155 | | | 4.34E-10 | CC 2 | Total b/g | 0 | | 3.62E-06 | CC 2 | Bands (Upper and Lower) A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000 Bands quantify uncertainty in Note: mean radioactivity. ## Code - 1 Measured activity - 2 Derived activity (best estimate) 3 Derived activity (upper limit) - 4 Not present - 5 Present but not significant - 6 Likely to be present but not assessed - 7 Present in significant quantities but not determined - 8 Not expected to be present in significant quantity