SITE	Sellafield		
SITE OWNER	Nuclear Decommissioning Authority	/	
WASTE CUSTODIAN	Sellafield Limited		
WASTE TYPE	ILW		
Is the waste subject to Scottish Policy:	No		
WASTE VOLUMES		Papartad	
. .		Reported	
Stocks:	At 1.4.2022	704.6 m ³	
Future arisings -	1.4.2022 - 31.3.2026	0 m ³	
Total future arisings:		0 m³	
Total waste volume:		704.6 m ³	
Comment on volumes:	The CHILW stream is not an ongoin litre drums. Future transfers of 270r to avoid double counting as they ar waste stream has a fixed inventory	ng arising but an approximate in m3 (1,347 drums) are not quanti e reported by Magnox Ltd in was of 4,004 drums to be transferred	ventory of 4,004 x 200 fied in this wate stream ste stream 5C317. The d to Sellafield.
Uncertainty factors on	Stock (upper): x 1.05	Arisings (upper)	х
volumes:	Stock (lower): x 0.95	Arisings (lower)	Х
WASTE SOURCE	The waste has originated from three wastes and National Disposal servi operational waste from glovebox and from the decommissioning of the ce Winfrith waste has mostly arisen from from the decommissioning of associ been produced by industry, research hospitals.	e sources; Harwell facility source ces waste. The Harwell waste co id alpha handling cell operations ells, gloveboxes, ventilation syste om the fast reactor oxide fuel ma iated gloveboxes and facilities. h laboratories, educational esta	es, Winfrith facility onsists of solid and also waste arising em and pipework. The anufacturing line and The NDS waste has blishments and

PHYSICAL CHARACTERISTICS

General description:	The waste consists of solid operational waste produced from Harwell glovebox and alpha- handling cell operations. It also includes waste arising from the decommissioning of gloveboxes and facilities. It also includes laboratory waste. Additionally there will be medical waste and sources. A portion of the drums have been repackaged since it was generated and the soft waste shredded before being repackaged again.
Physical components (%vol):	Metal (78.3%), Soil/Rubble (3.6%), Soft Organics (0.1%), Plastic/Rubber (8.9%), Paper/Wood (1.5%), Absorbed liquid (0.3%), Other (7.3%).
Sealed sources:	The waste contains sealed sources. The NDS waste drums accounting for 215 of the 4,004 drums had 47.4 wt% sources.
Bulk density (t/m ³):	0.64
Comment on density:	Mass of waste divided by volume.

CHEMICAL COMPOSITION

General description and components (%wt):	Metal (78.3%), Soil/Rubble (3.6%), Soft Organics (0.1%), Plastic/Rubber (8.9%), Paper/Wood (1.5%), Absorbed liquid (0.3%), Other (7.3%).
Chemical state:	Neutral
Chemical form of radionuclides:	H-3: May be present as gaseous sources. Th: Present as metal or oxide U: Comprising mainly oxide and metal Pu: Comprising mainly oxide and metal
Metals and alloys (%wt):	Metal is present in a large range of thicknesses.

WASTE STREAM

M 2D200

Contact Handled ILW from Harwell

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Stainless steel	33.0
Other ferrous metals	13.0
Iron	<0.50
Aluminium	7.0
Beryllium	TR
Cobalt	NE
Copper	3.0
Lead	1.3
Magnox/Magnesium	TR
Nickel	TR
Titanium	TR
Uranium	TR
Zinc	TR
Zircaloy/Zirconium	TR
Other metals	20.5

Organics (%wt):

Total cellulosics	1.5
Paper, cotton	1.1
Wood	0.40
Halogenated plastics	6.8
Total non-halogenated plastics	1.1
Condensation polymers	TR
Others	1.1
Organic ion exchange materials	TR
Total rubber	1.0
Halogenated rubber	1.0
Non-halogenated rubber	TR
Hydrocarbons	<1.0
Oil or grease	TR
Fuel	0
Asphalt/Tarmac (cont.coal tar)	0
Asphalt/Tarmac (no coal tar)	0
Bitumen	<1.0
Others	0
Other organics	6.7

(%wt) Type(s) / Grade(s) with proportions % of total C14 activity Includes mild steel Copper (2.5%) Brass (0.4%) Cadmium, Gold, Magneisum, Nickel, Silver, Tin. % of total C14 (%wt) Type(s) and comment activity 40 Contains PVC Contains perspex and polystyrene Contains nylon and bakelite

Other materials (%wt):

Other material includes Brick/Stone/Rubble (1.8%), Cementitious material (1.1%), Glass/Ceramics 0.7%.

WASTE STREAM 2D200 **Contact Handled ILW from Harwell**

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	TR		
Inorganic sludges and flocs	TR		
Soil	TR		
Brick/Stone/Rubble	1.8		
Cementitious material	1.1		
Sand	TR		
Glass/Ceramics	0.70		
Graphite	TR		
Desiccants/Catalysts			
Asbestos	TR		
Non/low friable	NE		
Moderately friable	NE		
Highly friable	NE		
Free aqueous liquids	TR		
Free non-aqueous liquids	TR		
Powder/Ash	TR	Trace amount of Euctectic powder	

Inorganic anions (%wt):

Carbonate ions are from solidified sodium and potassium.

(%wt)

Type(s) and comment

Fluoride	TR
Chloride	TR
lodide	TR
Cyanide	0
Carbonate	0.20
Nitrate	Ρ
Nitrite	TR
Phosphate	TR
Sulphate	TR
Sulphide	TR

-

Materials of interest for waste acceptance criteria:

	(%wt)	Type(s) and comment
Combustible metals	Р	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	Р	Trace amounts present
Hydrides	Р	Trace amounts present
Biological etc. materials	Р	Trace amounts present
Biodegradable materials	0	
Putrescible wastes		

Non-putrescible wastes.....

2022 Inventory

WASTE STREAM 2D200 **Contact Handled ILW from Harwell**

Corrosive materials	Р	Trace amounts present
Pyrophoric materials	Р	Trace amounts present
Generating toxic gases	0	
Reacting with water	Р	Trace amounts present
Higher activity particles	Р	
Soluble solids as bulk chemical compounds	NE	

Hazardous substances /

The waste contains cadmium and tin.

non hazardous pollutants:

	(%wt)	Type(s) and comment
Acrylamide	NE	
Benzene	NE	
Chlorinated solvents	NE	
Formaldehyde	NE	
Organometallics	NE	
Phenol	NE	
Styrene	NE	
Tri-butyl phosphate	0	
Other organophosphates	NE	
Vinyl chloride	Р	As PVC.
Arsenic	NE	
Barium	NE	
Boron	NE	
Boron (in Boral)	NE	
Boron (non-Boral)	NE	
Cadmium	Р	
Caesium	NE	
Selenium	NE	
Chromium	Р	
Molybdenum	Р	
Thallium	NE	
Tin	Р	
Vanadium	Р	
Mercury compounds	NE	
Others	NE	
Electronic Electrical Equipment (EEE)		
EEE Type 1	<0.10	
EEE Type 2	<0.10	
ЕЕЕ Туре 3	<0.10	
EEE Type 4	<0.10	
ЕЕЕ Туре 5	<0.10	

2022 Inventory

Complexing agents (%wt): Yes

	(%wt)	Type(s) and comment
EDTA	NE	
DPTA	NE	
NTA	NE	
Polycarboxylic acids	NE	
Other organic complexants	NE	
Total complexing agents	Р	
r the waste to Yes.		

2D200

Potential for the waste to contain discrete items:

PACKAGING AND CONDITIONING

Conditioning method:	At present there is no disposal route for the CHILW drums, however it is believed that with an extension to the current LOC a portion of this population could be processed through the Waste Treatment Complex (WTC). These drums could then be supercompacted in WTC and loaded into a basket within a 500 I drum such that there is a cement annulus between the basket and the drum skin. Future Waste Treatment Complex (WTC) facilities are currently projected to use a similar treatment method.
Plant Name:	Waste Treatment Complex (future capabilities are anticpated to be titled WTC2 & WTC3).
Location:	Sellafield.
Plant startup date:	1997 (It is anticipated that WTC2 will become operational in \sim 2034 and WTC3 in \sim 2061).
Total capacity (m³/y incoming waste):	NE
Target start date for packaging this stream:	-
Throughput for this stream (m³/y incoming waste):	NE
Other information:	<u>.</u>

Likely container type:	Container	Waste packaged (%vol)	Waste loading (m ³)	Payload (m ³)	Number of packages
	500 I drum (basket for waste)	100.0	~0.759	~0.504	929

Likely container type comment:	-
Range in container waste volume:	The reported waste loading is for the current WTC (supercompaction) process. Typically between 1 and 10 compacted 200 litre drums will be loaded into a 500 litre drum, with an average of 5.6. The range and variability for WTC2 & WTC3 have yet to be assessed, although it is assumed that the values will be similar to those for the current WTC facility. We also assume that ~10% of CHILW drums may need direct grouting if they are not compactable.
Other information on containers:	Stainless Steel
Likely conditioning matrix: Other information:	Other A GGBS/CEM I grout mix is used to generate the grout annulus which surrounds the compacted feed drums in a WTC product drum. The conditioning matrix relevant to future
Conditioned density (t/m ³):	facilities (WTC2 and WTC3) is currently unknown.

WASTE STREAM 2D200 **Contact Handled ILW from Harwell** Conditioned density Conditioned density calculated using data from current WTC product drum stock. The comment: density is typically between 1.8 and 2.6 t/m³, although values outside of this range are possible. Other information on conditioning: Opportunities for alternative Yes disposal routing: Estimated Date that Opportunity Baseline Opportunity Stream Comment Opportunity Management Route Management Route Confidence volume (%) will be realised Potential for stream volume reduction Disposal at a Disposal at a N/A Low _ Geological Disposal Geological Disposal if one of the planned future treatment Facility Facility plants utilises thermal treatment RADIOACTIVITY Source: The source of radioactivity is from glovebox and cell operations at Harwell, Winfrith site and NDS waste. Uncertainty: The specific activity uncertainty is based on records of arisings. The total alpha and total beta/gamma are the sum of the individual radionuclide activities. Definition of total alpha and total beta/gamma: Measurement of Specific acitivity data has been derived using measured activity and dividing by the radioactivities: measured waste volume. Other information:

WASTE STREAM 2D200 Contact Handled ILW from Harwell

	Mean radioactivity, TBg/m ³			Mean radioactivity. TBo/m ³					
	Waste at	Bands and	Future Ban	ds and		Waste at	Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings (Code	Nuclide	1.4.2022	Code	arisings	Code
Н3	2.70E-01	BB 2			Gd 153				
Be 10	1.41E-15	BB 2			Ho 163				
C 14	2.33E-06	BB 2			Ho 166m				
Na 22	4.99E-08	BB 2			Tm 170				
AI 26					Tm 171				
CI 36	2.87E-07	BB 2			Lu 174				
Ar 39					Lu 176				
Ar 42					Hf 178n				
K 40	6.20E-12	BB 2			Hf 182				
Ca 41					Pt 193				
Mn 53					TI 204	1.72E-07	BB 2		
Mn 54	4.53E-11	BB 2			Pb 205				
Fe 55	1.64E-05	BB 2			Pb 210	7.93E-06	BB 2		
Co 60	4.25E-06	BB 2			Bi 208				
Ni 59					Bi 210m				
Ni 63	4.15E-04	BB 2			Po 210	3.98E-12	BB 2		
Zn 65					Ra 223				
Se 79	3.80E-10	BB 2			Ra 225				
Kr 81					Ra 226	3.78E-10	BB 2		
Kr 85	2.43E-05	BB 2			Ra 228	4.97E-06	BB 2		
Rb 87					Ac 227	6.95E-07	BB 2		
Sr 90	4.15E-04	BB 2			Th 227				
Zr 93	4.41E-09	BB 2			Th 228	5.79E-06	BB 2		
Nb 91					Th 229	2.64E-07	BB 2		
Nb 92					Th 230				
Nb 93m	5.94E-11	BB 2			Th 232	5.01E-06	BB 2		
Nb 94					Th 234				
Mo 93	4.97E-06	BB 2			Pa 231	5.80E-05	BB 2		
Tc 97					Pa 233				
Tc 99	2.51E-05	BB 2			U 232	5.38E-07	BB 2		
Ru 106	7.44E-09	BB 2			U 233	1.23E-05	BB 2		
Pd 107					U 234	2.92E-05	BB 2		
Ag 108m	1.20E-13	BB 2			U 235	1.70E-06	BB 2		
Ag 110m					0 236	1.58E-07	BB 2		
Cd 109	4.37E-08	BB 2			U 238	4.32E-05	BB 2		
Cd 113m					Np 237	3.50E-05	BB 2		
Sn 119m					Pu 236	9.33E-13	BB 2		
Sn 121m					Pu 238	3.15E-02	BB 2		
Sn 123					Pu 239	1.98E-02	BB 2		
Sn 126	1.84E-11	BB 2			Pu 240	1.75E-02	BB 2		
Sb 125	1.02E-07	BB 2			Pu 241	7.42E-01	BB 2		
SD 126					Pu 242	9.89E-06	вв 2		
Te 125m					Am 241	2.83E-02	BB 2		
Te 12/m 1120	2 1 4 E 40	BD 0			AIII 242M	1 025 06			
1 129	2.14E-10				AIII 243	1.935-06			
Cs 134	2.19E-05	BB 2			Cm 242	3.53E-12	BB 2		
Cs 135	3.10E-08				Cm 243	0.11E-13			
CS 137	6.74E-04				Cm 244	3.23E-05			
Da 133	1.70E-07	DD Z			Cm 240	1.15E-08	DD Z		
La 13/					Cm 240	2 995 07	BB 0		
La 130	8 00E 00	BD 0		1	Cf 240	2.00E-U/			
De 144	0.995-08				Cf 250	5.91E-07			
Pm 147		BB 2			Cf 251				
Sm 147	1.03E-04	ע מט			Cf 252	1 025 07	BB 2		
Sm 147 Sm 151	1 025 06	BB 2			Of 202 Other o	2 305 06	BB 2		
511 151 Fu 152	1.92E-00 3.77E-00	BR 2			Other b/a	2.39E-00 8 50E-06	BB 2		
Eu 152 Fu 154	1 46F-06	RR 2			Total a	9 72F-00	BR 2	n	
Eu 154	2 665 00	BB 2			Total b/a	1.01 - 02		0	
Eu 100	2.002-03			1	rotal bry	1.012+00	56 Z	U	

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3

C a factor of 10 D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity