SITE	Sellafield				
SITE OWNER	Nuclear Decommissioning Authority				
WASTE CUSTODIAN	Sellafield Limited	t			
WASTE TYPE	ILW				
Is the waste subject to Scottish Policy:	No				
WASTE VOLUMES			Reported		
Stocks:	At 1.4.2022		440.0 m ³		
Total future arisings:			0 m³		
Total waste volume:			440.0 m ³		
Comment on volumes:	There will be no future arisings to this stream. It is believed that a more or less complete inventory is available for Cell 8 from tipping records; this gives a total volume of $55m^3$. This has been assumed to be the volume of waste in every cell, hence total waste = $8 \times 55 = 440m^3$. All of this volume is conservatively assumed to be ILW.				
Uncertainty factors on	Stock (upper):	x 1.25		Arisings (upper)	x
volumes:	Stock (lower):	x 0.5		Arisings (lower)	Х
WASTE SOURCE	In cell stored was contaminated pla systems, stored	ste was general oper ant items and second in mild steel boxes.	ational wast lary wastes.	e associated with o Also, HEPA filters	disposal of from ventilation

PHYSICAL CHARACTERISTICS

General description:	Miscellaneous (beta/gamma active) solid waste (redundant pipework, plant equipment, HEPA filters, etc). The waste includes a mast 28 ft long, a cast iron flask (approx 42 t) and two concrete blocks (6 t each). Free liquor has been identified in one of the cells however this is due to be removed prior to waste export. Cells were originally open to the weather and so the cell wastes have deteriorated due to the damp conditions that occurred.
Physical components (%vol):	Redundant pipework, plant equipment, HEPA filters in mild steel boxes, concrete/rubble. Metals (iron, steel, lead) 75%, organics (paper, wood, PVC, soil) 10%, concrete 10%, glass fibre <5%.
Sealed sources:	-
Bulk density (t/m ³):	*2.5
Comment on density:	* The density has been estimated from typical values for broken ferrous scrap. The average density of HEPA filters is 0.2 t/m ³ as stored.

CHEMICAL COMPOSITION

General description and components (%wt):	Metals (iron, steel, lead) >75%, organics (paper, wood, PVC, soil) <10%, concrete <10%, glass fibre <5%.
Chemical state:	Neutral
Chemical form of radionuclides:	H-3: NE C-14: NE Cl-36: NE Se-79: NE Tc-99: NE I-129: NE Ra: NE Th: NE U: NE Np: NE Pu: NE
Metals and alloys (%wt):	Both sheet and bulk metal likely to be present, proportions not estimated.

WASTE SI	IREAM 2	D21 Solid W	aste St	orage Cells	
			(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
	Stainless steel		Ρ	The split of material between stainless steel and other ferrous materials is unknown	
	Other ferrous m	etals	Р		
	Iron		Р		
	Aluminium		NE		
	Beryllium		NE		
	Cobalt		NE		
	Copper		NE		
	Lead		Р		
	Magnox/Magnes	sium	NE		
	Nickel		NE		
	Titanium				
	Uranium		NE		
	Zinc		NE		
	Zircaloy/Zirconiu	ım	NE		
	Other metals		NE		
Organics (%v	vt):	The average organic and non-halogenated present. Halogenated uncertainty of the wa	content c d plastics d plastic a ste in the	of stocks and arisings is 4.5 wt%. Cellulos are present. Additionally soil and bird car and rubber may be present, materials not concrete cells. PVC is known to be prese	ics, halogenated casses may be specified due to the ant.
			(%wt)	Type(s) and comment	% of total C14 activity
	Total cellulosics		<2.0		Source
	Paper cotton				

Paper, cotton..... Wood..... Halogenated plastics ~1.5 Total non-halogenated plastics..... ~0.50 Condensation polymers..... ~0.25 Others..... ~0.25 0 Organic ion exchange materials.... Total rubber..... ~0.50 Halogenated rubber <0.25 Non-halogenated rubber..... ~0.25 Hydrocarbons..... Oil or grease Fuel..... Asphalt/Tarmac (cont.coal tar)... Asphalt/Tarmac (no coal tar)..... Bitumen..... Others..... Other organics..... <1.0 _

Other materials (%wt):

WASTE STREAM 2D21 Solid Waste Storage Cells

(%wt) Type(s) and comment

% of total C14 activity

Inorganic ion exchange materials	0
Inorganic sludges and flocs	0
Soil	Ρ
Brick/Stone/Rubble	Ρ
Cementitious material	<5.0
Sand	
Glass/Ceramics	<1.0
Graphite	0
Desiccants/Catalysts	
Asbestos	Р
Non/low friable	
Moderately friable	
Highly friable	
Free aqueous liquids	NE
Free non-aqueous liquids	0
Powder/Ash	0

Inorganic anions (%wt):

Chlorides may be present as a result of the historic storage conditions.

Type(s) and comment

(%wt)

Fluoride	NE
Chloride	TR
lodide	NE
Cyanide	NE
Carbonate	NE
Nitrate	NE
Nitrite	NE
Phosphate	NE
Sulphate	NE
Sulphide	NE

Materials of interest for waste acceptance criteria:

Some hazardous materials may be present. Remote video survey of Cell 1 has indicated presence of pipework cladding which is suspected to be some type of asbestos. It is not possible at the current time to sample this material to confirm this or estimate quantities. The presence of hazardous materials cannot be excluded.

	(%wt)	Type(s) and comment
Combustible metals	NE	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	NE	
Hydrides	NE	
Biological etc. materials	0	
Biodegradable materials	NE	
Putrescible wastes	NE	

2022 Inventory

WASTE STREAM 2D21 Solid Waste Storage Cells

Non-putrescible wastes	NE
Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	NE
Reacting with water	0
Higher activity particles	NE
Soluble solids as bulk chemical compounds	NE

Hazardous substances / non hazardous pollutants:

Waste includes lead and asbestos.

	(/0 001
Acrylamide	
Benzene	NE
Chlorinated solvents	
Formaldehyde	
Organometallics	
Phenol	NE
Styrene	
Tri-butyl phosphate	NE
Other organophosphates	
Vinyl chloride	NE
Arsenic	NE
Barium	
Boron	NE
Boron (in Boral)	
Boron (non-Boral)	
Cadmium	NE
Caesium	
Selenium	NE
Chromium	NE
Molybdenum	NE
Thallium	
Tin	NE
Vanadium	NE
Mercury compounds	
Others	NE
Electronic Electrical Equipment (EEE)	
EEE Type 1	
EEE Type 2	
ЕЕЕ Туре 3	
EEE Type 4	
EEE Type 5	

(%wt) Type(s) and comment

Complexing agents (%wt): No

	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		
Total complexing agents	0	

Potential for the waste to contain discrete items: Yes. Steel fabrications, a redundant flask and retrieval tools are likely to be included in this waste stream.

PACKAGING AND CONDITIONING

Conditioning method:	It is proposed to retrieve the waste and place it into liners which will be placed into a DCC when DEP is available to take the waste. The Waste may be size-reduced or low-force compacted to improve the packing efficiency. At DEP, the DCC will be flood grouted and the grouted boxes will be placed into the Lightly Shielded Stores. Some boxes may contain waste not suitable for direct encapsulation or storage in a geological repository; the processing route for these is not yet defined.
Plant Name:	DEP
Location:	Sellafield.
Plant startup date:	DEP 2027
Total capacity (m³/y incoming waste):	-
Target start date for packaging this stream:	-
Throughput for this stream (m³/y incoming waste):	-
Other information:	Packaging capacity requirements depend upon the final amount of cell waste which

Packaging capacity requirements depend upon the final amount of cell waste which is ILW. It is assumed that 75% of the cell waste is ILW but this figure could be as low as 25%.

Likely container type:	Container	Waste packaged (%vol)	Waste loading (m ³)	Payload (m³)	Number of packages
	Other	~100.0	~2.1	~2.1	210

Likely container type comment:	-
Range in container waste volume:	There is likely to be a range of unconditioned waste per container due to the diverse nature of the cell inventory.
Other information on containers:	Steel 3m ³ box - specification is still being quantified (may be DCC)
Likely conditioning matrix:	Compatitious grout matrix not yet defined
Other Information.	Cementitious grout, mainx not yet defined.
Conditioned density (t/m ³):	~1.3
Conditioned density comment:	This conditioned waste density is calculated from the conditioned waste volume and mass of the waste.
Other information on conditioning:	-
Opportunities for alternative disposal routing:	Yes

WASTE STREAM	
--------------	--

2D21

Solid Waste Storage Cells

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment			
Disposal at a Geological Disposal Facility	Disposal at LLWR	NE	-	Medium	Some of this waste may be suitable for LLWR but quantities cannot yet be specified.			
RADIOACTIVITY								
Source:	The activit contamina	The activity arises from activated steel or from fixed beta/gamma or alpha emitting contaminants (miscellaneous).						
Uncertainty:	The specif been mad The four n inventory. average d Waste cor 40 years c assumed i	The specific activities have been derived by calculation. A number of assumptions have been made in the calculation and additional uncertainties introduced due to the following: The four main plants have between them consigned approximately 84% of the recorded inventory. The highest recorded dose rates are up to 1 order of magnitude greater than the average dose rate and upto 2 orders of magnitude greater than the lowest dose rates. Waste consignments started in the early 1970s and hence some waste will have had over 40 years decay. The known inventory records cover approximately 60% of the total assumed inventory.						
Definition of total alpha and total beta/gamma: No allowance has been included in the total alpha and total beta/gamma activities in nuclides other than those listed. No data is available to allow 'other' nuclides to be estimated.			total beta/gamma activities for allow 'other' nuclides to be					
Measurement of radioactivities:	Fingerprin been used decayed to main cons from each	Fingerprints for wastes from the four main consignors have been determined. These have been used in conjunction with dose rates at time of tipping, assumed to be 1986, and decayed to 2019, to calculate the specific activities in average case packages for each main consignor, then averaging these in line with the volume percent of waste consigned from each plant.						
Other information:	-	-						

WASTE STREAM 2D21 Solid Waste Storage Cells

	Mean radioactivity, TBq/m ³				Mean radioactivity, TBg/m ³				
	Waste at	Bands and	Future	Bands and		Waste at	Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code
H 3	1.09E-05	CD 2			Gd 153				
Be 10					Ho 163				
C 14	1.90E-07	CD 2			Ho 166m				
Na 22					Tm 170				
AI 26					Tm 171				
CI 36					Lu 174				
Ar 39					LU 176				
Ar 42					Hr 178n				
K 40					HI 102				
Ca 41 Mn 53					FL 193 TL 204				
Mn 54					Ph 205				
Fe 55					Pb 210				
Co 60	5.71E-05	CD 2			Bi 208				
Ni 59					Bi 210m				
Ni 63					Po 210				
Zn 65					Ra 223				
Se 79					Ra 225				
Kr 81					Ra 226				
Kr 85					Ra 228				
Rb 87					Ac 227	3.29E-12	CD 2		
Sr 90	2.22E-02	CD 2			Th 227	3.23E-12	CD 2		
Zr 93					Th 228				
Nb 91					Th 229				
Nb 92					Th 230	1.44E-10	CD 2		
Nb 93m					Th 232				
Nb 94					Th 234	5.00E-07	CD 2		
Mo 93					Pa 231	8.20E-12	CD 2		
Tc 97					Pa 233	2.10E-05	CD 2		
Tc 99	1.70E-04	CD 2			U 232	5 405 40	0.0.0		
RU 106	1.10E-12	CD 2			0 233	5.49E-10	CD 2		
Pa 107					U 234	4.60E-07			
Ag 100m					0 235	5.40E-08			
Cd 109					11 238	5.40E-07			
Cd 113m					Nn 237	2 10E-05			
Sn 119m					Pu 236	2.1.02 00	00 2		
Sn 121m					Pu 238	5.55E-04	CD 2		
Sn 123					Pu 239	2.00E-03	CD 2		
Sn 126	2.57E-08	CD 2			Pu 240	1.90E-03	CD 2		
Sb 125	2.63E-07	CD 2			Pu 241	4.08E-03	CD 2		
Sb 126					Pu 242	1.70E-06	CD 2		
Te 125m	6.59E-08	CD 2			Am 241	1.45E-03	CD 2		
Te 127m					Am 242m				
l 129	3.30E-04	CD 2			Am 243				
Cs 134	6.87E-08	CD 2			Cm 242	2.29E-19	CD 2		
Cs 135					Cm 243	5.67E-08	CD 2		
Cs 137	4.09E-02	CD 2			Cm 244	1.10E-06	CD 2		
Ba 133					Cm 245				
La 137					Cm 246				
La 138					Cm 248				
Ce 144	8.15E-16	CD 2			Cf 249				
Pm 145	0 0 / F	<u> </u>			Cf 250				
Pm 147	2.24E-06	CD 2			Ct 251				
Sm 147	4 7 4 5 0 5				Ct 252				
SM 151	1.74E-05				Other a				
EU 152	1.09E-07					5 025 02	CD 2	0	
EU 134 Eu 155	3.3/E-UD				Total a	5.33E-03		U A	
EU 100	1.035-00				i otai D/g	0./9E-02		U	

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3

C a factor of 10 D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity