SITE Sellafield

SITE OWNER Nuclear Decommissioning Authority

WASTE CUSTODIAN Sellafield Limited

WASTE TYPE LLW; SPD1

Is the waste subject to Scottish Policy:

No

WASTE VOLUMES

Reported

Total future arisings: 0 m³

Total waste volume: 461.8 m³

Comment on volumes: Assumes a medium term strategy for decommissioning the Magnox flasks. The total

number of Magnox flasks identified is 42 which includes 9 that were already at Sellafield in 2019 and a further 33 flasks transferred from Magnox Ltd (from waste stream 9Z201). The volume declared for disposal is the volume of the flasks without any size reduction. A study is currently being carried out to consider options for decommissioning the PNTL (Japanese owned flasks on the Sellafield site) which may influence the overall decommissioning

strategy for the Magnox flasks.

Uncertainty factors on

Stock (upper): x 1.5 Stock (lower): x 0.5 Arisings (upper) x

volumes: Stock (lower): x 0.5

Arisings (lower) x

WASTE SOURCE Transport flasks that have been used for irradiated Magnox fuel transport.

PHYSICAL CHARACTERISTICS

General description: These are ferritic steel containers internally contaminated with traces of activation and

fission products from the spent fuel. These containers are obsolete and are nominally empty. The flasks are painted with CEGB System 6 epoxy paint. The flasks weigh up to 42.77 t each. All flasks have handling trunnions fitted. This is the maximum all up weight of a flask assembly. Actual disposal weight may be less. The waste is not anticipated to undergo any changes since it was generated as the flasks are presently stored dry and covered at Sellafield. Flasks sometimes undergo chemical decontamination as part of

routine maintenance.

Physical components (%wt): Almost 100% by weight steel. Flask surfaces are painted with CEGB System 6 epoxy paint

(~0.1% wt) and there is a rubber seal (viton) (<0.01% wt).

Sealed sources: The waste does not contain sealed sources.

Bulk density (t/m³): 3.47

Comment on density: The average density of 3.47 t/m³ refers to the mass of the components divided by the

volume as stored prior to disposal.

CHEMICAL COMPOSITION

General description and components (%wt):

Flask surfaces are painted with CEGB System 6 epoxy paint and there is a seal made of viton. The chemical components are Iron (approx. 98%) possibly with nickel, vanadium, molybdenum, manganese, niobium and chromium in alloying proportions, Viton (<0.01%),

and CEGB System 6 epoxy based paint (~0.1%).

Chemical state: Neutral

Chemical form of radionuclides:

H-3: Tritium may be present as water or as other inorganic or organic compounds.

C-14: The carbon 14 content is insignificant.

Se-79: The selenium isotope content is insignificant. Tc-99: The technetium isotope content is insignificant. Ra: The radium isotope content is insignificant. Th: The thorium isotope content is insignificant.

U: The chemical form of uranium isotopes has not been determined but may be present as

uranium oxides.

Np: The neptunium isotope content is insignificant.

Pu: The chemical form of plutonium isotopes has not been determined but may be present

as plutonium oxides.

Metals and alloys (%wt): Approximately 100% of waste is bulk metal in the form of transport flasks.

			(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
	Stainless steel		4.0		,
	Other ferrous metals		96.0	BS 1503, ASTM/A350.	
	Iron				
	Aluminium				
	Beryllium				
	Cobalt		0		
	Copper				
	Lead		0		
	Magnox/Magnesium		TR		
	Nickel		TR		
	Titanium				
	Uranium				
	Zinc		0		
	Zircaloy/Zirconium		0		
	Other metals		0	No "other" metals present.	
Organics (%)	B rubbe		coated w	lask lid and flask body, and around valves ith CEGB System 6 epoxy based. Viton E	
			(%wt)	Type(s) and comment	% of total C14
	Total cellulosics		0		activity
	Paper, cotton		0		
	Wood		0		
	Halogenated plastics		0		
	Total non-halogenated pl	astics	0		
			_		

	(70001)	Type(3) and comment	/(
Total cellulosics	0		
Paper, cotton	0		
Wood	0		
Halogenated plastics	0		
Total non-halogenated plastics	0		
Condensation polymers	0		
Others	0		
Organic ion exchange materials	0		
Total rubber	<0.01		
Halogenated rubber	<0.01		
Non-halogenated rubber	0		
Hydrocarbons			
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Others			
Other organics	~0.10		

Other materials (%wt):

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	0		
Inorganic sludges and flocs	0		
Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	0		
Sand			
Glass/Ceramics			
Graphite	0		
Desiccants/Catalysts			
Asbestos	0		
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids	0		
Free non-aqueous liquids	0		
Powder/Ash	0		
Inorganic anions (%wt): Inorganic anions are	e unlikely t	to be present.	
	(%wt)	Type(s) and comment	
Fluoride	0		
Chloride	0		
lodide	0		
Cyanide	0		
Carbonate	0		
Nitrate	0		
Nitrite	0		
Phosphate	0		
Sulphate	0		
Sulphide	0		
Materials of interest for No materials likely twaste acceptance criteria:	to pose a f	ire or other non-radiological hazard have	e been identified.
	(%wt)	Type(s) and comment	
Combustible metals	0		
Low flash point liquids	0		
Explosive materials	0		
Phosphorus	0		
Hydrides	0		
Biological etc. materials	0		
Biodegradable materials	0		
Putrescible wastes	0		
Non-putrescible wastes	0		

(Corrosive materials	0	
	Pyrophoric materials	0	
	Generating toxic gases	0	
	Reacting with water	0	
	Higher activity particles		
	Soluble solids as bulk chemical compounds		
Hazardous sul			
		(%wt)	Type(s) and comment
	Acrylamide		
	Benzene		
	Chlorinated solvents		
	Formaldehyde		
	Organometallics		
	Phenol		
	Styrene		
	Tri-butyl phosphate		
1	Other organophosphates		
,	Vinyl chloride		
	Arsenic		
	Barium		
	Boron		
	Boron (in Boral)		
	Boron (non-Boral)		
	Cadmium		
	Caesium		
	Selenium		
	Chromium		
	Molybdenum		
	Thallium		
	Tin		
,	Vanadium		
	Mercury compounds		
1	Others		
	Electronic Electrical Equipment (EEE)		
	EEE Type 1		
	EEE Type 2		
	EEE Type 3		
	EEE Type 4		
	EEE Type 5		

Complexing	g agents (%wt): No		
		(%wt)	Type(s) and comment
	EDTA		
	DPTA		
	NTA		
	Polycarboxylic acids		
	Other organic complexants		There are no organic complexing agents present.
	Total complexing agents	0	

Potential for the waste to contain discrete items:

Yes. Waste itself could be a discrete item

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction Supercompaction (HFC) Incineration Solidification Decontamination Metal treatment Size reduction Decay storage Recyling / reuse Other / various None	Off-site	100.0

Comment on planned treatments:

Treatment will be via size reduction and decontamination, with an anticipated maximum of 5% of the flask assumed to then be disposed of to the LLWR as LLW. The remainder is anticipated to be free release scrap.

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository	5.0	3.5
Expected to be consigned to a Landfill Facility		
Expected to be consigned to an On-Site Disposal Facility		
Expected to be consigned to an Incineration Facility		
Expected to be consigned to a Metal Treatment Facility	95.0	3.5
Expected to be consigned as Out of Scope		
Expected to be recycled / reused		
Disposal route not known		

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Notice	2022/23	Stream volume 2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Opportunity Stream Date that Opportunity
Management Route Management Route volume (%)

We stimated Date that Opportunity Opportunity Confidence will be realised

Waste Packaging for Disposal:

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other	5.0	10	3

Other information: After size reduction and dismantling only an anticipated maximum of 5% of the

flask is assumed to then be disposed of to the LLWR as LLW. The remainder is

anticipated to be free release scrap.

Waste Planned for Disposal at the LLW Repository:

Container voidage: -

Waste Characterisation

Form (WCH):

The waste meets the LLWR's Waste Acceptance Criteria (WAC).

The waste does not have a current WCH.

It is assumed that the WAC will be prepared in the future in line with the precedent already set for the disposal of a cylindrical package previously consigned to LLWR.

Waste consigned for disposal to LLWR in year of generation:

No. The waste will be disposed of when the flasks are prepared for disposal. This is

dependent upon work load and NDA strategy.

Non-Containerised Waste for In-Vault Grouting:

Stream volume (%):

Waste stream variation: -

Bounding cuboidal volume:

Inaccessible voidage: -

Other information: -

RADIOACTIVITY

Source: Contamination from Magnox fuel cooling pond water.

Uncertainty: The activity values are current best estimates. The waste is expected to be LLW but levels

of contamination have to be determined.

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

Estimated from sampling and analysis data.

Other information: There may be contamination by fission products, actinides and activation products in

Magnox fuel. The values quoted are indicative of the values that might be expected.

	Mean radioactivity, TBq/m³			Mean radioactivity, TBq/m³				
Nuclide	Waste at 1.4.2022	Bands and Code	Future Bands and arisings Code	Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code
H 3		6		Gd 153				
Be 10		8		Ho 163				
C 14		8		Ho 166m				
Na 22				Tm 170				
Al 26				Tm 171				
CI 36		8		Lu 174				
Ar 39				Lu 176				
Ar 42				Hf 178n				
K 40				Hf 182				
Ca 41		8		Pt 193				
Mn 53				TI 204				
Mn 54	1.20E-18	CC 2		Pb 205				
Fe 55		6		Pb 210	7.73E-16	CC 2		
Co 60	6.35E-09	CC 2		Bi 208				
Ni 59		6		Bi 210m				
Ni 63		6		Po 210	7.34E-16	CC 2		
Zn 65		6		Ra 223		5		
Se 79		6		Ra 225	2.62E-12	CC 2		
Kr 81				Ra 226	3.20E-15	CC 2		
Kr 85				Ra 228		5		
Rb 87				Ac 227		5		
Sr 90	1.93E-06	CC 2		Th 227		5		
Zr 93		6		Th 228		5		
Nb 91				Th 229	2.63E-12	CC 2		
Nb 92				Th 230	5.12E-13	CC 2		
Nb 93m		6		Th 232		5		
Nb 94		6		Th 234	2.89E-09	CC 2		
Mo 93		6		Pa 231		5		
Tc 97				Pa 233	5.49E-12	CC 2		
Tc 99		6		U 232				
Ru 106	6.32E-16	CC 2		U 233	9.62E-10	CC 2		
Pd 107		6		U 234	1.92E-09	CC 2		
Ag 108m		6		U 235	8.25E-15	CC 2		
Ag 110m				U 236	8.25E-14	CC 2		
Cd 109				U 238	2.89E-09	CC 2		
Cd 113m				Np 237	5.51E-12	CC 2		
Sn 119m				Pu 236	0.4== 00			
Sn 121m		6		Pu 238	3.17E-09	CC 2		
Sn 123				Pu 239	2.89E-07	CC 2		
Sn 126	4.005.40	6		Pu 240	9.60E-08	CC 2		
Sb 125	1.23E-10	CC 2		Pu 241	1.91E-06	CC 2		
Sb 126	2 00F 44	CC 2		Pu 242	6 475 07	6 CC 2		
Te 125m	3.08E-11	CC 2		Am 241	6.47E-07			
Te 127m I 129		6		Am 242m Am 243		6		
	5 65E 11	6 CC 2		Am 243 Cm 242	7 795 29	6 CC 2		
Cs 134 Cs 135	5.65E-11	6		Cm 242 Cm 243	7.78E-28	6		
Cs 135	9.86E-06	CC 2		Cm 244		6		
Ba 133	∂.00E-00	00 2		Cm 244 Cm 245		8		
La 137				Cm 246		8		
La 137				Cm 248		U		
Ce 144	1.24E-18	CC 2		Cff 249				
Pm 145	1.272 10			Cf 250				
Pm 147		6		Cf 251				
Sm 147		Ĭ		Cf 252				
Sm 151		6		Other a		8		
Eu 152		6		Other b/g		· ·		
Eu 154	6.50E-09	CC 2		Total a	1.04E-06	CC 2	0	
Eu 155	2.202 00	6		Total b/g	1.37E-05	CC 2	0	
		٠			1	I		

Bands (Upper and Lower)

A a factor of 1.5
B a factor of 3
C a factor of 10
D a factor of 100
E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

- 1 Measured activity
 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity
- 8 Not expected to be present in significant quantity