SITE	Sellafield			
SITE OWNER	Nuclear Decommissioning Authority			
WASTE CUSTODIAN	Sellafield Limited			
WASTE TYPE	ILW			
Is the waste subject to Scottish Policy:	No			
WASTE VOLUMES		Reported		
Stocks:	At 1.4.2022	0.5 m ³		
Future arisings -	1.4.2022 - 31.3.2023 1.4.2023 - 31.3.2024	0 m³ 0.5 m³		
Total future arisings:		0.5 m³		
Total waste volume:		1.0 m ³		
Comment on volumes:	Local Effluent Treatment Plant commenced operation in July 2007 and from this date began to remove beta activity from the pond water on to Ionsiv cartridges. Dewatering date yet to be confirmed, therefore further arisings may occur. During the 20 years of expected operations the plant will be operated to minimise the generation of this secondary waste but ensure discharges and plant conditions are acceptable and meet all regulatory and safety parameters. Note the Ionsiv cartridge was designed to fit into a 250 litre liner for export in the plant 12te flask.			
Uncertainty factors on	Stock (upper): x 1.0	Arisings (upper)	x 1.3	
volumes.	Stock (lower): x 1.0	Arisings (lower)	x 0.7	
WASTE SOURCE	The waste is a cartridge 580mm dian medium lonsiv IE-911 (165kg). This is and Sr from the pond water. The cart export from the plant in the 12te flask	neter 993mm in height containi becomes radioactive by removi ridge was designed to fit into a c.	ng the ion exchange ng predominately Cs 250 litre liner for waste	

PHYSICAL CHARACTERISTICS

General description:	The cartridge container has been designed so that it can be handled by the plant and its flasking equipment and is suitable for a number of disposal options. The secondary waste package is not yet confirmed but a couple of options are being progressed with the regulators. Once created the waste will be stable and when the cartridge is fully loaded (used up) it will be stored in the pond. There will be some generation of hydrogen from the radiolysis of water and this is allowed for in the design of the cartridge.
Physical components (%wt):	Stainless steel cartridge container (67%), Ion exchange material Ionsiv 911 (33%).
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	~2
Comment on density:	The envelope volume of the cartridge is approximately 0.250m3 and its overall mass is approximately 500kg giving a bulk density of 500/0.250kg/m3 = 2,000kg/m3.

CHEMICAL COMPOSITION

General description and components (%wt):	Cartridge (67%) is iron with small amounts of carbon, Cr.The Ionsiv (33% of weight) is made up as follows: TiO2 28.6 to 34.8% wt; SiO2 14.8 to 18.2% wt; Nb2O5 18.5 to 22.7% wt; Na2O 3.6% to 4.4% wt; ZrO2 14.1 to 18.8% wt; Cl 0.12 to 0.33% wt.
Chemical state:	The waste is neutral and is not strongly oxidising or reducing.
Chemical form of radionuclides:	-
Metals and alloys (%wt):	-

	(%wt)	Type(s) / Grade(s) with proportions	% of total C14
Stainless steel	~67.0		activity
Other ferrous metals			
Iron			
Aluminium			
Beryllium			
Cobalt			
Copper			
Lead			
Magnox/Magnesium			
Nickel			
Titanium	0		
Uranium			
Zinc			
Zircaloy/Zirconium			
Other metals			
Organics (%wt): -			
	(%wt)	Type(s) and comment	% of total C14
Total cellulosics			activity
Paper, cotton			
Wood			
Halogenated plastics			
Total non-halogenated plastics			
Condensation polymers			
Others			
Organic ion exchange materials			
Total rubber			
Halogenated rubber			
Non-halogenated rubber			
Hydrocarbons			
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Others			
Other organics			

Other materials (%wt):

-

		(%wt)	Type(s) and comment	% of total C14 activity
	Inorganic ion exchange materials	~33.0	Ionsiv IE- 911.	
	Inorganic sludges and flocs			
	Soil			
	Brick/Stone/Rubble			
	Cementitious material			
	Sand	0		
	Glass/Ceramics			
	Graphite			
	Desiccants/Catalysts	0		
	Asbestos	0		
	Non/low friable			
	Moderately friable			
	Highly friable			
	Free aqueous liquids			
	Free non-aqueous liquids			
	Powder/Ash			
Inorganic an	ions (%wt): -			
		(%wt)	Type(s) and comment	
	Fluoride			

Fluoride
Chloride
lodide
Cyanide
Carbonate
Nitrate
Nitrite
Phosphate
Sulphate
Sulphide

-

Materials of interest for waste acceptance criteria:

Combustible metals	0
Low flash point liquids	0
Explosive materials	0
Phosphorus	0
Hydrides	0
Biological etc. materials	0
Biodegradable materials	0
Putrescible wastes	0
Non-putrescible wastes	0

(%wt) Type(s) and comment

...... 0 0

Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	0
Higher activity particles	0
Soluble solids as bulk chemical compounds	0

-

Hazardous substances / non hazardous pollutants:

Acrylamide	
Benzene	0
Chlorinated solvents	
Formaldehyde	
Organometallics	
Phenol	0
Styrene	
Tri-butyl phosphate	0
Other organophosphates	
Vinyl chloride	0
Arsenic	0
Barium	
Boron	0
Boron (in Boral)	0
Boron (non-Boral)	0
Cadmium	0
Caesium	
Selenium	0
Chromium	0
Molybdenum	0
Thallium	
Tin	0
Vanadium	0
Mercury compounds	
Others	0
Electronic Electrical Equipment (EEE)	
EEE Type 1	
EEE Type 2	
ЕЕЕ Туре 3	
ЕЕЕ Туре 4	
ЕЕЕ Туре 5	

(%wt) Type(s) and comment

Type(s) and comment

Complexing agents (%wt): No

		(%wt)
EDTA		
DPTA		
NTA		
Polycarboxylic acids		0
Other organic comple	xants	0
Total complexing age	nts	0
ne waste to No		

Potential for the waste to contain discrete items:

PACKAGING AND CONDITIONING

Conditioning method:	The designated route for the used IonSiv cartridges is to be conditioned in WEP for grouting to immobilise the ion exchange material inside the cartridge, and then 4 cartridges within product drums would be placed in a stillage and sent to EPS3 for storage until a repository is available. Transfers to WEP commenced in Q4 2018/19.
Plant Name:	Waste Encapsulation Plant
Location:	Sellafield
Plant startup date:	Available
Total capacity (m³/y incoming waste):	-
Target start date for packaging this stream:	-
Throughput for this stream (m³/y incoming waste):	-
Other information:	

Other information:

Likely container type:	Container	Waste packaged (%vol)	Waste loading (m ³)	Payload (m³)	Number of packages
	500 l drum	100.0	0.472	0.472	3

Likely container type comment:	The existing route is that the used lonsiv cartridges loaded with predominately Cs and Sr are to initially be stored in the pond. The cartridges will be exported in a 250 litre liner to WEP. The envelope volume of $0.25m^3$ containing the ion exchange material loaded with beta activity will be immobilised in situ using a cement grout formulation.
Range in container waste volume:	-
Other information on containers:	-
Likely conditioning matrix:	Cement
Other information:	-
Conditioned density (t/m ³):	-
Conditioned density comment:	-
Other information on conditioning:	-
Opportunities for alternative disposal routing:	Not yet determined

WASTE STREAM	2D74	Pile Fuel S	torage Pond	lon Exchang	ge Material					
Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment					
-	-	-	-	-	-					
RADIOACTIVITY										
Source:	The activit products C treated by Cs and Sr	The activity originates from the corrosion of fuel and is predominately the soluble fission products Cs and Sr, which are transferred to the pond water. The pond water is then treated by passing through the Local Effluent Treatment Plant (LETP) which removes the Cs and Sr on to the lonsiv contained in a purpose built cartridge.								
Uncertainty:	Having be absorbing Cs and Sr be around possibility lonsivs wil pond has l previous s cartridges ratio over	Having been operational for over 10 years, the IonSiv's are proving highly effective in absorbing beta activity from the pond water. The radionuclides removed are predominately Cs and Sr. Each cartridge will changed once the overall activity of each pair is analysed to be around 7-8TBq. under certain operational circumstances this may be higher with the possibility of activity levels of 20TBq however it is more likely to be 11-12TBq as the Ionsivs will be "blinded" prior to reaching this activity level. Early removal of fuel from the pond has led to a revised downward estimation of lifetime cartridge requirements from previous submissions. As caesium 137 is prefentially removed over strontium 90 and the cartridges will always be changed on total activity, there will be a change in the Cs to Sr ratio over time. For stocks the ratio is 60:40, for arisings this has been changed to 50:50.								
Definition of total alpha and total beta/gamma	a The nature instance, v the pond, on the car utilised to	The nature and radiological fingerprint of the sludge differs with the pond areas, for instance, within the bays there is a higher fuel content within the sludge than there is within the pond, as activities in the bays is disturbed we may note different ratios of radionuclides on the cartridges. Sampling of these areas is an ongoing actitivity and this data will be utilised to ascertain the radiological fingerprint on the cartridges for disposal.								
Measurement of radioactivities:	The loadin measurem radionuclio to the lons beta per p	The loading of activity onto the lonsiv cartridge will be calculated by sampling and flow measurements. The samples will be analysed for total beta and alpha and other radionuclides and by spreadsheet calculations. The quantities of radioactivity absorbed on to the lonsiv cartridges will be calculated and monitored to ensure it remains below 7TBq beta per pair of cartridges.								
Other information:	The activit calculatior data comp nuclides ir	y loaded on to (from flow me prising of total a toolved).	the lonsiv cartric eters). The calcul alpha, total beta	dges will be estin lated radionuclid and the individua	nated from sampling and volume e inventory will be from analysis al isotopes Cs and Sr (the main					

ſ

	Mean radioactivity, TBg/m ³			Mean radioactivity, TBg/m ³					
Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code	Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code
Н 3					Gd 153				
Be 10					Ho 163				
C 14					Ho 166m				
Na 22					Tm 170				
AI 26					Im 1/1				
CI 36					Lu 174				
Δr 42					Lu 176 Hf 178n				
K 40					Hf 182				
Ca 41					Pt 193				
Mn 53					TI 204				
Mn 54					Pb 205				
Fe 55					Pb 210				
Co 60					Bi 208				
Ni 59					Bi 210m				
Ni 63					Po 210				
Zn 65					Ra 223				
Se 79					Ra 225				
Kr 81					Ra 226 Ro 228				
RI 65 Rh 87					Ra 220 Δc 227				
Sr 90	4 76F+00	AA 1	5 40E+00	AA 2	Th 227				
Zr 93			01102100	2	Th 228				
Nb 91					Th 229				
Nb 92					Th 230				
Nb 93m					Th 232				
Nb 94					Th 234				
Mo 93					Pa 231				
Tc 97					Pa 233				
TC 99					U 232				
RU 106 Pd 107					0 233				
Ag 108m					U 235				
Ag 110m					U 236				
Cd 109					U 238				
Cd 113m					Np 237				
Sn 119m					Pu 236				
Sn 121m					Pu 238				
Sn 123					Pu 239				
Sn 126					Pu 240				
Sb 125					Pu 241				
SD 126					Pu 242				
Te 125m					Am 242m				
I 129					Am 243				
Cs 134					Cm 242				
Cs 135					Cm 243				
Cs 137	5.10E+00	AA 1	5.40E+00	AA 2	Cm 244				
Ba 133					Cm 245				
La 137					Cm 246				
La 138					Cm 248				
Ce 144					Cf 249				
Pm 145					Cf 251				
Sm 147					Cf 252				
Sm 151					Other a				
Eu 152					Other b/g				
Eu 154					Total a	NE		NE	
Eu 155					Total b/g	NE		NE	

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3 C a factor of 10

D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity