SITE	Springfields
SITE OWNER	Nuclear Decommissioning Authority
WASTE CUSTODIAN	Springfields Fuels Limited
WASTE TYPE	LLW
Is the waste subject to Scottish Policy:	No
WASTE VOLUMES	Reported
Stocks:	At 1.4.2022 ~30.0 m ³
Future arisings -	1.4.2022 - 31.3.2025 ~64.0 m ³ 1.4.2025 - 31.3.2030 ~30.0 m ³
Total future arisings:	94.0 m ³
Total waste volume:	124.0 m ³
Comment on volumes:	Waste disposals are in line with expected plant operations and associated waste generation and usually occur in the year of generation. It is the intention to continue with the policy of minimising arisings and pursuing processing routes to avoid generation of LLW. The radwaste disposals that Springfields make to the Clifton Marsh Landfill Site have changed with the issue to SITA (UK) Ltd (the site operator) of a new disposal authorisation to support the UK radwaste strategy. The activity concentrations limits within the new authorisation are higher within the scope of LLW than in previous authorisations. Uranium is the predominant disposal radionuclide in Springfields disposals to CMLFS; the site is authorised to accept material for disposal up to concentrations around the 200Bq/g level (0.2GBq/tonne). This clearly straddles the formally accepted definitions of VLLW and into the lower reaches of LLW. Springfields will continue to operate BAT principals in assessing the need to pre-treat any waste stream.
Uncertainty factors on volumes:	Stock (upper):x 1.0Arisings (upper)x 2.0Stock (lower):x 1.0Arisings (lower)x 0.2
WASTE SOURCE	The waste is in the form of waste cakes generated during residues processing activities.

PHYSICAL CHARACTERISTICS

General description:	The wastes are uranic residues from uranium purification residues recovery processes. The wastes will also contain a proportion of silica based filter aid. No items require special handling. The waste does not undergo any change between generation and disposal.
Physical components (%wt):	Acid insoluble mineral compounds (54.8%), finely divided graphite (35%), metal (10%) and uranium content (~ 0.2%).
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	~1.5
Comment on density:	The density is that of the drummed waste in storage and is based on nuclear material inventory data and the type of containment.

CHEMICAL COMPOSITION

General description and components (%wt):	Acid insoluble mineral compounds (54.8%), finely divided graphite (35%), metal (10%) and uranium content (~ 0.2 %).
Chemical state:	Acid
Chemical form of radionuclides:	 H-3: Not expected to be present. C-14: Not expected to be present. Cl-36: Not expected to be present. Se-79: Not expected to be present. Tc-99: Not expected to be present. I-129: Not expected to be present. Ra: Not expected to be present. Th: Not expected to be present. U: Oxides of uranium. Np: Not expected to be present. Pu: Not expected to be present.
Metals and alloys (%wt):	The 200 litre metal drum in which the waste is currently stored will be disposed of as part of the waste stream.
	2022 Inventory

WASIE	STREAM	2E91	Process	Waste	s for Clifton Marsh	
	Stainless s	teel		(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
		ous metals		10.0	main constituent the mild steel package	
	Iron					
	Aluminium.					
	Beryllium					
	Cobalt					
	Copper					
	Lead					
	Magnox/Ma	agnesium				
	Nickel					
	Titanium					
	Uranium			~0.20		
	Zinc					
	Zircaloy/Zir	rconium				
	Other meta	als				
Organics (%wt):	Not es	timated.			
				(%wt)	Type(s) and comment	% of total C14
	Total cellul	osics		()		activity
		otton				
		ed plastics				
		nalogenated p				
		sation polyme				
		n exchange m				
	-	er				
		ated rubber				
		ogenated rubb				
		ons				
	-	ease				
		Tarmac (cont.				
		Tarmac (cont.) Tarmac (no co				
	UUDI3					

WASTE STREAM 2E91 Process Wastes for Clifton Marsh

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	0		
Inorganic sludges and flocs	54.8		
Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	0		
Sand	0		
Glass/Ceramics	0		
Graphite	35.0		
Desiccants/Catalysts	0		
Asbestos	0	Not expected to be present.	
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids	0		
Free non-aqueous liquids	0		
Powder/Ash	0		

Inorganic anions (%wt):

Nitrates may be present from the residues recovery process. Other anions are not expected to be present.

Type(s) and comment

	(%wt)
Fluoride	0
Chloride	0
lodide	0
Cyanide	0
Carbonate	0
Nitrate	~1.0
Nitrite	0
Phosphate	0
Sulphate	0
Sulphide	0

Materials of interest for waste acceptance criteria:

Combustible metals	0
Low flash point liquids	0
Explosive materials	0
Phosphorus	0
Hydrides	0
Biological etc. materials	0
Biodegradable materials	0
Putrescible wastes	0

Type(s) and comment

(%wt)

WASTE STREAM 2E91 Proc

Process Wastes for Clifton Marsh

Non-putrescible wastes	0
Corrosive materials	Ρ
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	0
Higher activity particles	0
Soluble solids as bulk chemical compounds	0

The process wastes are subject to an acid wash process and hence there is the potential for the wastes to be mildly acidic.

Hazardous substances /
non hazardous pollutants:The process wastes are subject to an acid wash process and hence there is the potential
for the wastes to be mildly acidic.

Type(s) and comment

	(%wt)
Acrylamide	0
Benzene	0
Chlorinated solvents	0
Formaldehyde	0
Organometallics	0
Phenol	0
Styrene	0
Tri-butyl phosphate	0
Other organophosphates	0
Vinyl chloride	0
Arsenic	0
Barium	0
Boron	0
Boron (in Boral)	0
Boron (non-Boral)	0
Cadmium	0
Caesium	0
Selenium	0
Chromium	0
Molybdenum	0
Thallium	0
Tin	0
Vanadium	0
Mercury compounds	0
Others	NE
Electronic Electrical Equipment (EEE)	
EEE Type 1	0
ЕЕЕ Туре 2	0
EEE Type 3	0
EEE Type 4	0

2022 Inventory

WASTE STREAM

2E91

Process Wastes for Clifton Marsh

EEE Type 5..... 0

Complexing agents (%wt): No

		(%wt)	Type(s) and comment
EDTA		0	
DPTA		0	
NTA		0	
Polycar	boxylic acids	0	
Other o	rganic complexants	0	
Total co	omplexing agents	0	
Potential for the waste contain discrete items			

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):	Treatment	On-si Off s		Stream volume %
	Low force compaction			
	Supercompaction (HFC)			
	Incineration			
	Solidification			
	Decontamination			
	Metal treatment			
	Size reduction			
	Decay storage			
	Recyling / reuse			
	Other / various			
	None			100.0
Comment on planned treatments:	This material is already the result of uranium bear requires no further treatment.	ing residu	ies being	processed so
Disposal Routes:	Disposal Route		Stream volume	
	Expected to be consigned to the LLW Repository	/		
	Expected to be consigned to a Landfill Facility		100.	0 ~1.5
	Expected to be consigned to an On-Site Disposa	l Facilitv		-
	Expected to be consigned to an Incineration Faci	•		
	Expected to be consigned to a Metal Treatment Facility			
	Expected to be consigned as Out of Scope			
	Expected to be recycled / reused			
	Disposal route not known			
			1	
Classification codes for waste	expected The wastes are uranic residues from	n uranium	n purificat	ion residues

to be consigned to a landfill facility:

The wastes are uranic residues from uranium purification residues recovery processes. The wastes will also contain a proportion of silica based filter aid. No items require special handling.

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

WASTE STREAM

2E91

Process Wastes for Clifton Marsh

Disposal Route	Stream volume %			
	2022/23	2023/24	2024/25	
Expected to be consigned to the LLW Repository				
Expected to be consigned to a Landfill Facility				
Expected to be consigned to an On-Site Disposal Facility				
Expected to be consigned to an Incineration Facility				
Expected to be consigned to a Metal Treatment Facility				
Expected to be consigned as Out of Scope				
Expected to be recycled / reused				
Disposal route not known				

Opportunities for alternative disposal routing: Not yet determined

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	-	-	-	-	-

Waste Packaging for Disposal: (Not applicable to this waste stream)

Container	Stream volume	Waste loading	Number of
	%	m ³	packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other			

Other information:

Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream)

Container voidage:

Waste Characterisation	
Form (WCH):	

Waste consigned for disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%)	:

Waste stream variation:

Bounding cuboidal volume:

Inaccessible voidage:

Other information:

RADIOACTIVITY

	The main source of activity is contamination by uranium and its daughters. The waste becomes contaminated from contact with intermediate uranium compounds during the fuel manufacturing process.
Uncertainty:	Activities are estimated on the basis that site processes a mixture of natural and enriched material.

WASTE STREAM	2E91 Process Wastes for Clifton Marsh
Definition of total alpha and total beta/gamma:	The waste stream is contaminated by coming in contact with Uranium and its intermediate products (oxides). The uranium is from a series of enrichments with a Site mean of 3.2%U235, it is assumed that the uranium is not irradiated therefore contains no reactor products and is aged to a point of equilibrium. This waste stream typically has an activity concentration of 75Bq/g therefore this is split equally between alpha and beta/ gamma activity.
Measurement of radioactivities:	Sample chemical analysis.
Other information:	A total activity is assumed in the Radionuclide tab based on the site generic fingerprint and has been assumed a 50:50 split between alpha and b/g.

WASTE STREAM 2E91 **Process Wastes for Clifton Marsh**

	Mean radioactivity, TBq/m ³						Mean radioactivity, TBq/m ³			
Nuclide	Waste at Bands and	Future Bands and	Nuclide		ds and	Future	Bands and			
	1.4.2022 Code	arisings Code		1.4.2022	Code	arisings	Code			
H 3			Gd 153							
Be 10			Ho 163							
C 14			Ho 166m							
Na 22			Tm 170							
AI 26			Tm 171							
CI 36			Lu 174							
Ar 39			Lu 176							
Ar 42			Hf 178n							
K 40			Hf 182							
Ca 41			Pt 193							
Mn 53			TI 204							
Mn 54			Pb 205							
Fe 55			Pb 210							
Co 60			Bi 208							
Ni 59			Bi 210m							
Ni 63			Po 210							
Zn 65			Ra 223							
Se 79			Ra 225							
Kr 81			Ra 226							
Kr 85			Ra 228							
Rb 87			Ac 227							
Sr 90			Th 227							
Zr 93			Th 228							
Nb 91			Th 229							
Nb 92			Th 230							
Nb 93m			Th 232							
Nb 94			Th 234							
Mo 93			Pa 231							
Tc 97			Pa 233							
Tc 99			U 232							
Ru 106			U 233							
Pd 107			U 234							
Ag 108m			U 235							
Ag 110m			U 236							
Cd 109			U 238							
Cd 113m			Np 237							
Sn 119m			Pu 236							
Sn 121m			Pu 238							
Sn 123			Pu 239							
Sn 126			Pu 240							
Sb 125			Pu 241							
Sb 126			Pu 242							
Te 125m			Am 241							
Te 127m			Am 242m							
l 129			Am 243							
Cs 134			Cm 242							
Cs 135			Cm 243							
Cs 137			Cm 244							
Ba 133			Cm 245							
La 137			Cm 246							
La 138			Cm 248							
Ce 144			Cf 249							
Pm 145			Cf 249 Cf 250							
Pm 143 Pm 147			Cf 250							
Sm 147			Cf 252							
Sm 147 Sm 151			Other a							
Sm 151 Eu 152										
			Other b/g	3 755 A5		2 7EE AE				
Eu 154			Total a		3B 2	3.75E-05	BB 2			
Eu 155			Total b/g	3.75E-05 E	3B 2	3.75E-05	BB 2			

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

 1 Measured activity
 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity 8 Not expected to be present in significant quantity