SITE	Sellafield		
SITE OWNER	Nuclear Decommissioning Authority		
WASTE CUSTODIAN	Sellafield Limited		
WASTE TYPE	LLW; SPD1		
Is the waste subject to Scottish Policy:	No		
WASTE VOLUMES	Reported		
Stocks:	At 1.4.2022 1223.4 m ³		
Total future arisings:	0 m ³		
Total waste volume:	1223.4 m ³		
Comment on volumes:	The total number of Excellox flasks identified is 84. The flasks are presently stored both dry inside buildings and outdoors with covers on at Sellafield. They are currently considered to be redundant and unlicensible. The volume declared is the volume of the flasks, however, it is planned to decontaminate and recycle the metal. If this is successful only small amounts of residues will arise for disposal. A study is currently being carried out to consider options for decommissioning the PNTL (Japanese owned flasks on the Sellafield site) which may influence the overall decommissioning strategy for the Excellox flasks.		
Uncertainty factors on	Stock (upper): x 1.5 Arisings (upper) x		
volumes:	Stock (lower): x 0.5 Arisings (lower) x		
WASTE SOURCE	Fuel flasks, used in the transport of spent LWR fuel from Japanese reactor sites to Sellafield.		

PHYSICAL CHARACTERISTICS

General description:	These are steel containers internally contaminated with traces of activation and fission products from spent fuel. These containers are nominally empty and were previously used for the transport of spent LWR fuel. They comprise cylindrical Excellox flasks and they are painted with CEGB System 6 epoxy paint. Flasks weigh between 38.5 and 83.1 tonnes each. The waste is not anticipated to undergo any changes since it was generated. The flasks are presently stored both dry inside buildings and outdoors with covers on at Sellafield. Flasks sometimes undergo chemical decontamination as part of routine maintenance.
Physical components (%vol):	Spent fuel transport flasks (100%). Flask surfaces are painted with CEGB System 6 epoxy paint (~0.1% wt) and there is a rubber viton seal (<0.01% wt).
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	3.68
Comment on density:	The density ranges from 2.21 to 4.77 te/m ³ . The weighted average density is 3.68 te/m ³ .
CHEMICAL COMPOSITION	Ν
General description and components (%wt):	Ferritic steel (52%), lead (43%) and stainless steel (5%). The majority of the flasks are painted with CEGB System 6 epoxy paint.
Chemical state:	Neutral
Chemical form of radionuclides:	 H-3: Unknown if present. C-14: The chemical form of Carbon has not been determined. Se-79: Unknown if present. Tc-99: The chemical form of Technetium has not been determined. Ra: Unknown if present. Th: Unknown if present. U: The chemical form of Uranium has not been determined. Np: The chemical form of Neptunium has not been determined. Pu: The chemical form of Plutonium has not been determined.
Metals and alloys (%wt):	100% bulk metal as fabrications or lead castings. Ferritic steel is typically 100 mm and 200 mm thick. Stainless steel is typically 15 mm thick. The lead is in rings up to 1245 & 1320 mm OD, 839 & 890 mm ID and 180 mm thickness.Early flasks are to the standards - body plate (BS1501-grade 224/400B/LT50), forging (BS1503 - grade 224/430E/LT50), stainless steel (BS1501-304-S12 & BS970-304-S12 max 0.03% carbon). Later flasks are to standards - mild steel (BS1501(1980)24/400E/LT50), lead (BS3909/2), stainless steel

(BS1501-304-S12). Nickel and niobium are present in stainless steel and carbon steel in alloying proportions.

	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel	5.0	BS1501-304-S12, BS970-304-S12, BS1501-304-S12.	
Other ferrous metals	52.0	BS1501-grade 224/400B/LT50, BS1503 - grade 224/430E/LT50, BS1501(1980)24/400E/LT50.	
Iron			
Aluminium			
Beryllium			
Cobalt	0		
Copper			
Lead	43.0	BS3909/2.	
Magnox/Magnesium	0		
Nickel			
Titanium			
Uranium			
Zinc	0		
Zircaloy/Zirconium	0		
Other metals	0		

Viton "O" ring seals between flask lid and flask body, and around valves, are made of Viton B rubber, stainless steel & asbestos, or silicone. Most flasks are coated with CEGB System 6 epoxy based. Viton B (fluorinated) present in trace quantity in the form of gasket seals. Silicone sealants used in the past could be halogenated as well.

	(%wt)	Type(s) and comment	% of total C14 activity
Total cellulosics	0		acany
Paper, cotton	0		
Wood	0		
Halogenated plastics	0		
Total non-halogenated plastics	0		
Condensation polymers	0		
Others	0		
Organic ion exchange materials	0		
Total rubber	TR		
Halogenated rubber	TR		
Non-halogenated rubber	0		
Hydrocarbons			
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Others			
Other organics	TR		

2022 Inventory

WASTE STREAM 2F17 Excellox Flasks

Other materials (%wt):

Graphite is reported a being present in some seals used on these flasks.

% of total C14 activity

	(%wt)	Type(s) and comment
Inorganic ion exchange materials	0	
Inorganic sludges and flocs	0	
Soil	0	
Brick/Stone/Rubble	0	
Cementitious material	0	
Sand		
Glass/Ceramics		
Graphite	TR	
Desiccants/Catalysts		
Asbestos	TR	
Non/low friable		
Moderately friable		
Highly friable		
Free aqueous liquids	0	
Free non-aqueous liquids	0	
Powder/Ash	0	

Inorganic anions (%wt):

Inorganic anions are not expected to be present.

	(%wt)	Type(s) and comment
Fluoride	0	
Chloride	0	
lodide	0	
Cyanide	0	
Carbonate	0	
Nitrate	0	
Nitrite	0	
Phosphate	0	
Sulphate	0	
Sulphide	0	

Materials of interest for Viton seals contain fluorcarbons which can be release at high temperatures. No other materials likely to pose non-radiological hazard have been identified.

Asbestos is present in some of the gasket seals on some flasks.

Type(s) and comment

	(%wt)
Combustible metals	0
Low flash point liquids	0
Explosive materials	0
Phosphorus	0
Hydrides	0
Biological etc. materials	0
Biodegradable materials	0

2022 Inventory

WASTE STREAM 2F17 Excellox Flasks

	-
Putrescible wastes	0
Non-putrescible wastes	0
Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	
Reacting with water	0
Higher activity particles	
Soluble solids as bulk chemical compounds	

Hazardous substances /
non hazardous pollutants:There are trace amounts of cadmium on bolts in the form of plating. The total quantity of
lead in this waste stream is approximately 2,500 tonnes.

(%wt) Type(s) and comment

Acrylamide
Benzene
Chlorinated solvents
Formaldehyde
Organometallics
Phenol
Styrene
Tri-butyl phosphate
Other organophosphates
Vinyl chloride
Arsenic
Barium
Boron
Boron (in Boral)
Boron (non-Boral)
Cadmium
Caesium
Selenium
Chromium
Molybdenum
Thallium
Tin
Vanadium
Mercury compounds
Others
Electronic Electrical Equipment (EEE)
ЕЕЕ Туре 1
ЕЕЕ Туре 2
ЕЕЕ Туре 3
ЕЕЕ Туре 4
ЕЕЕ Туре 5

2022 Inventory

Complexing agents (%wt): No

	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		No complexing agents are present.
Total complexing agents	0	
or the waste to Yes. Waste itself	could be a	a discrete item.

Potential for the waste to contain discrete items:

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):	Treatment	On-si Off s		Stream volume %
	Low force compaction			
	Supercompaction (HFC)			
	Incineration			
	Solidification			
	Decontamination			
	Metal treatment			100.0
	Size reduction			
	Decay storage			
	Recyling / reuse			
	Other / various			
	None			
Comment on planned treatments:	Treatment will be via size reduction and decontan maximum of 5% of the flask assumed to then be of The remainder is anticipated to be free release so	disposed o		•
Disposal Routes:	Disposal Route		Stream volume	
	Expected to be consigned to the LLW Repository	/	5.	0 3.7
	Expected to be consigned to a Landfill Facility			
	Expected to be consigned to an On-Site Disposa	I Facility		
	Expected to be consigned to an Incineration Fac	lity		
	Expected to be consigned to a Metal Treatment I	acility	95.	0 3.7
	Expected to be consigned as Out of Scope			
	Expected to be recycled / reused			
	Disposal route not known			

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %			
	2022/23	2023/24	2024/25	
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known				

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	-	-	-	-	-

-

Waste Packaging for Disposal:

Container	Stream volume	Waste loading	Number of	
	%	m ³	packages	
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other	5.0	10	7	

Other information:

After size reduction and dismantling only an anticipated maximum of 5% of the flask is assumed to then be disposed of to the LLWR as LLW. The remainder is anticipated to be free release scrap.

Waste Planned for Disposal at the LLW Repository:

Container voidage:	-			
Waste Characterisation Form (WCH):	The waste meets the LLWR's Waste Acceptance Criteria (WAC). The waste does not have a current WCH.			
	A WCH will be raised nearer the time of disposal.			
Waste consigned for disposal to LLWR in year of generation:	No. The waste will be disposed of when the flasks are prepared for disposal. This is dependent upon work load and NDA strategy.			

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):	-			
Waste stream variation:	-			
Bounding cuboidal volume:				
Inaccessible voidage:	-			
Other information:	-			
RADIOACTIVITY				

Source:	Fission and activation product contamination with some actinides possibly present.
Uncertainty:	-
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	-
Other information:	-

WASTE STREAM 2F17 **Excellox Flasks**

	Mean radioad	tivity, TBq/m³		Mean radioa	ctivity, TBq/m³
	Waste at Bands and	Future Bands and		Waste at Bands and	Future Bands and
Nuclide	1.4.2022 Code	arisings Code	Nuclide	1.4.2022 Code	arisings Code
Н 3			Gd 153		
Be 10			Ho 163		
C 14			Ho 166m		
Na 22			Tm 170		
AI 26			Tm 171		
CI 36			Lu 174		
Ar 39			Lu 174		
Ar 42			Hf 178n		
K 40			Hf 182		
Ca 41			Pt 193		
Mn 53			TI 204		
Mn 54			Pb 205		
Fe 55			Pb 210		
Co 60			Bi 208		
Ni 59			Bi 210m		
Ni 63			Po 210		
Zn 65			Ra 223		1
Se 79			Ra 225		1
Kr 81			Ra 226		
Kr 85			Ra 228		
Rb 87			Ac 227		
Sr 90			Th 227		
Zr 93			Th 228		
Nb 91			Th 229		
Nb 92			Th 230		
Nb 93m			Th 232		
Nb 94			Th 234		
Mo 93			Pa 231		
Tc 97			Pa 233		
Tc 99			U 232		
Ru 106			U 233		
Pd 107			U 234		
Ag 108m			U 235		
Ag 110m			U 236		
Cd 109			U 238		
Cd 113m			Np 237		
Sn 119m			Pu 236		
Sn 121m			Pu 238		
Sn 123			Pu 239		
Sn 125			Pu 240		
Sh 126 Sb 125			Pu 240 Pu 241		1
Sb 125 Sb 126			Pu 241 Pu 242		
Te 125m			Pu 242 Am 241		
Te 125m Te 127m			Am 241 Am 242m		1
l 129					
			Am 243 Cm 242		
Cs 134			Cm 242		1
Cs 135			Cm 243		
Cs 137			Cm 244		
Ba 133			Cm 245		1
La 137			Cm 246		1
La 138			Cm 248		
Ce 144			Cf 249		1
Pm 145			Cf 250		1
Pm 147			Cf 251		1
Sm 147			Cf 252		
Sm 151			Other a		1
Eu 152			Other b/g		1
Eu 154			Total a		0
Eu 155			Total b/g	<3.00E-02	0
	I	l	I Š		i

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity
 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity

8 Not expected to be present in significant quantity