SITE	Sellafield				
SITE OWNER	Nuclear Decommissioning Authority				
WASTE CUSTODIAN	Sellafield Limited				
WASTE TYPE	LLW				
Is the waste subject to Scottish Policy:	No				
WASTE VOLUMES		Penetted			
Stocks:	At 1 4 2022	0 m ³			
Future arisings -	1.4.2022 - 31.3.2023 1.4.2023 - 31.3.2024 1.4.2024 - 31.3.2025 1.4.2025 - 31.3.2026 1.4.2026 - 31.3.2027 1.4.2027 - 31.3.2028 1.4.2028 - 31.3.2029	110.4 m ³ 110.4 m ³ 110.4 m ³ 110.4 m ³ 110.4 m ³ 110.4 m ³			
Total future arisings:	1.4.2020 - 31.3.2029	770 7 m ³			
		770.7 m ³			
Comment on volumes:	Arisings are a function of keeping the ponds operational and removal as part of POCO. Arisings depend on the ability for off-site processing. There are currently 278 (nominally) LLW MEBs left in ponds. Volume per MEB (2.77 m3) is based on the average volume of the types remaining to be disposed (range is 1.7-3.3m3).				
Uncertainty factors on volumes:	Stock (upper): x Stock (lower): x	Arisings (upper) x 1.05 Arisings (lower) x 0.95			
WASTE SOURCE	Transport and pond storage containers for LWR fuel prior to reprocessing.				
PHYSICAL CHARACTERIS	STICS				
General description:	Multi Element Bottles (MEBs). MEBs are large (1.7m3 to 3.4r changes since it was generate	MEBs vary in size, but are generally cylindrical in shape. All n3) and heavy (1.2-4.34t). The waste has not undergone any d.			
Physical components (%vol):	MEBs (100%).				
Sealed sources:	The waste does not contain se	aled sources.			
Bulk density (t/m ³):	~1.06				
Comment on density:	The bulk density is based on th	ne mean mass and the mean volume of the MEBs.			
CHEMICAL COMPOSITIO	N				
General description and components (%wt):	Boronated stainless steel, stainless steel, boral, lead, aluminium. Minor components include copper/bronze, nickel and traces of rubber. The following composition is for a representative MEB design: stainless steel (80%), aluminium bronze (0.3%), boral (<6%, of which 1% is elemental boron), lead (<14%), rubber (TR). The proportions of materials will vary between different designs and may be between the following ranges: stainless steel 80-99% (some of which may be boronated), boral 0.2-10%, lead 0-14%, concrete 0-15%, aluminium bronze 0.1-0.5%. Other materials are present in small or trace quantities.				
Chemical state:	-				
Chemical form of radionuclides:	C-14: Oxides. Tc-99: Oxides. U: Oxides. Pu: Oxides.				
Metals and alloys (%wt):	62% sheet metal (thickness approx 1/4 inch), 24% bulk metal (thickness from 1-3 inches), 14% lead ballast (1 7/8 inches diam.)				

WASTE STREAM 2F36 LWR Pond Furniture				
	(%wt)	Type(s) / Grade(s) with proportions	% of total C1	
Stainless steel	80.0	304L.	activity	
Other ferrous metals	0			
Iron				
Aluminium	<6.0	Aluminium bronze, boral.		
Beryllium	•••			
Cobalt	0			
Copper	TR			
Lead	<12.0			
Magnox/Magnesium	0			
Nickel	0			
Titanium				
Uranium				
Zinc	0			
Zircaloy/Zirconium	0			
Other metals	0			
Organics (%wt): Rubber is present	as 'O' rings	/gaskets. Neoprene 'O' rings, 0.065%.		
	(%wt)	Type(s) and comment	% of total C1	
Total cellulosics	0		activity	
Paper, cotton	0			
Wood	0			
Halogenated plastics	0			
Total non-halogenated plastics	0			
Condensation polymers	0			
Others	0			
Organic ion exchange materials	0			
Total rubber	~0.07			
Halogenated rubber	~0.07			
Non-halogenated rubber	NE			
Hydrocarbons	NE			
Oil or grease				
Fuel				
Asphalt/Tarmac (cont.coal tar)				
Asphalt/Tarmac (no coal tar)				
Bitumen				
Bitumen				

Other materials (%wt):

The waste contains crud consisting of metal oxide corrosion products (either haematite or nickel substituted spinels) dislodged from the fuel previously held in the containers which constitute the waste. The principal constituents are Co-60 and Fe-55.

WASTE STREAM 2F36 **LWR Pond Furniture**

	(%wt)	Type(s) and comment	% of total C
			activity
inorganic ion exchange materials	0		
Inorganic sludges and flocs	<1.9		100.0
Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	0		
Sand			
Glass/Ceramics	0		
Graphite	0		
Desiccants/Catalysts			
Asbestos	0		
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids	<0.02		
Free non-aqueous liquids	0		
Powder/Ash	0		

total C14

Inorganic anions (%wt):

The listed anions are unlikely to be present. (%wt)

Fluoride	0
Chloride	0
lodide	0
Cyanide	0
Carbonate	0
Nitrate	0
Nitrite	0
Phosphate	0
Sulphate	0
Sulphide	0

Materials of interest for waste acceptance criteria: MEBs are dewatered before disposal both by primary dewatering to remove bulk of water from MEB body and by secondary dewatering to remove the heel of liquor from the MEB base cavity. Some MEBs have catalytic recombiners present but the recombiner material is a very small proportion of the waste stream.

Type(s) and comment

	(/0 11
Combustible metals	0
Low flash point liquids	0
Explosive materials	0
Phosphorus	0
Hydrides	0
Biological etc. materials	0
Biodegradable materials	0
Putrescible wastes	0

(%wt) Type(s) and comment

Non-putrescible wastes	
Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	0
Higher activity particles	Ρ
Soluble solids as bulk chemical compounds	0

Activity is present in the crud particles (<2wt%).

Hazardous substances / non hazardous pollutants:

The waste contains lead as ballast in MEB types 1175, 1176, 1190, 1192 & 3321 only. Catalytic recombiners made from platinum/palladium are present in a very small proportion of the MEBs (<1% of waste stream). The weight of this material is negligible compared with the MEB weight.

Type(s) and comment

	(%wt)
Acrylamide	NE
Benzene	NE
Chlorinated solvents	NE
Formaldehyde	NE
Organometallics	NE
Phenol	NE
Styrene	NE
Tri-butyl phosphate	NE
Other organophosphates	NE
Vinyl chloride	NE
Arsenic	NE
Barium	NE
Boron	1.0

Boron (in Boral)	1.0
Boron (non-Boral)	0
Cadmium	NE
Caesium	NE
Selenium	NE
Chromium	NE
Molybdenum	NE
Thallium	NE
Tin	NE
Vanadium	NE
Mercury compounds	NE
Others	NE
Electronic Electrical Equipment (EEE)	
EEE Type 1	NE
EEE Type 2	NE
EEE Type 3	NE

_

1%wt Boron is the value per MEB (for 2F36, 2F15 & 2F41) but the total Boron for all MEBs (1673) comes to 44.5te noted here to reserve the capacity at LLWR.

WASTE STREAM 2F36 LWR Pond Furniture

	EEE Type 4	NE NE	
Complexing	agents (%wt): No		
		(%wt)	Type(s) and comment
	EDTA	NE	
	DPTA	NE	
	NTA	NE	
	Polycarboxylic acids	NE	
	Other organic complexants	0	Organic complexing agents are unlikely to be present.
	Total complexing agents	0	

Potential for the waste to Yes contain discrete items: Item

Yes. Size reduced boral sections have been identified as potential Discrete Items

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):	Treatment	On-si Off s	te / site	Stream volume %
	Low force compaction Supercompaction (HFC) Incineration Solidification Decontamination Metal treatment Size reduction Decay storage Recyling / reuse Other / various None			100.0
Comment on planned treatments:	The MEBs will be transferred off-site to a metal re suggests that ~40% of the waste may comprise u purpose of the 2022 UK Inventory this assumption material is assumed to be consigned to the LLWF here to ensure it is captured in the 2022 UK Inven	cycling fao nrecyclab n has been R from the ttory.	cility. Curr le materia n used. U MRF, but	rent experience I, and for the nrecyclable is reported
Disposal Routes:	Disposal Route		Stream volume %	Disposal 6 density t/m3
	Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known) ~1.0

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

-

WASTE STREAM 2F36 LWR Pond Furniture

Disposal Route	Stream volume %			
	2022/23	2023/24	2024/25	
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known				

Opportunities for alternative disposal routing: No

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	-	-	-	-	-

Waste Packaging for Disposal:

Container		Stream volume %	Waste loading m ³	Number of packages			
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 1/2 Height IP-2 Disposal/ 2m box (no shielding) 4m box (no shielding) Other	~40.0	~10	31				
Other information:	value for uncomp	acted wastes grou	ited at				
Waste Planned for Disposal a	at the LLW Repository:						
Container voidage:	Voidage will be minimised based on size-reduction technique and waste loading plan.						
aste CharacterisationThe waste meets the LLWR's Waste Acceptance Criteria (WAC).rm (WCH):The waste has a current WCH.							
Waste consigned for disposal to LLWR in year of generation:	Yes.						
Non-Containerised Waste for	In-Vault Grouting: (Not applic	able to this waste	stream)				
Stream volume (%):	-						
Waste stream variation:	-						
Bounding cuboidal volume:							
Inaccessible voidage:	-						
Other information:	-						
RADIOACTIVITY							
Source:	The activity arises from a) corrosion products in the reactor cooling circuit adhering to the fuel and being dislodged in the MEB and b) contamination from pond water.						
Uncertainty:	certainty: The specific activity is based on the average activity measured for a large number or already exported divided by the average mass per MEB and is the best estimate.						

WASTE STREAM	2F36 LWR Pond Furniture	
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.	
Measurement of radioactivities:	Specific activity meaurements unchanged since 2019 assessment. The specific activity based on the average measured internal Co-60 activity of a large number of MEBs a measured and disposed of divided by the average MEB volume of 2.88m ³ (over 2F15 2F36, and 2F41 streams). Activity values for the other isotopes present are derived f the measured Co-60 activity using the fingerprint developed after analysis of fuel cru several MEBs in combination with external HP&S swab data. The external contamination with external and the external fingerprint is equivalent to that of water which contributes only a very small fraction to the overall fingerprint.	
Other information:	Beta/gamma activity dominant.	

WASTE STREAM 2F36 **LWR Pond Furniture**

	Mean radioactivity, TBg/m ³				Mean radioactivity. ΤΒα/m ³				
Nuclida	Waste at	Bands and	Future	Bands and	Nu - Bala	Waste at	Bands and	Future	Bands and
NUCIIDE	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code
H 3 Bo 40			6.55E-07	BC 2	Gd 153				
Be 10		l	1.61E-05		H0 163 Ho 166m				
Na 22		I	1.012-00		Tm 170				
AL 26					Tm 171				
CI 36					Lu 174				
Ar 39					Lu 176				
Ar 42					Hf 178n				
K 40					Hf 182				
Ca 41					Pt 193				
Mn 53					TI 204				
Mn 54					Pb 205				
Fe 55			2.58E-05	BC 2	Pb 210				
Co 60			1.74E-04	AA 2	Bi 208				
Ni 59					Bi 210m				
Ni 63			5.12E-04	BC 2	Po 210				
Zn 65					Ra 223				
Se 79					Ra 225				
Kr 81					Ra 226				
Kr 85					Ra 228				
Rb 87			4 005 00		AC 227				
Sr 90			1.39E-06	BB 2	Th 228				
Zr 93					Th 220				
ND 91					Th 229				
ND 92					Th 232				
ND 95111			1 15E-06	BB 2	Th 234				
Mo 93			1.132-00		Pa 231				
Tc 97					Pa 233				
Tc 99					U 232				
Ru 106					U 233				
Pd 107					U 234				
Ag 108m					U 235				
Ag 110m					U 236				
Cd 109					U 238				
Cd 113m					Np 237				
Sn 119m					Pu 236				
Sn 121m					Pu 238			1.54E-07	BC 2
Sn 123					Pu 239			1.02E-07	BC 2
Sn 126					Pu 240			1.02E-07	BC 2
Sb 125			5.00E-06	BB 2	Pu 241			1.15E-05	BC 2
Sb 126					Pu 242				
Te 125m					Am 241			4.10E-07	BC 2
Te 127m					Am 242m				
I 129					Am 243				
Cs 134					Cm 242				
Cs 135			6 20E 05	PC 2	Cm 243			5 12E-08	BC 2
CS 137 Bo 133	-		0.39E-05	BC 2	Cm 245			5.122-00	00 2
La 137					Cm 246				
La 137					Cm 248				
Ce 144					Cf 249				
Pm 145					Cf 250				
Pm 147			1.39E-06	BC 2	Cf 251				
Sm 147				-	Cf 252				
Sm 151			5.41E-06	BC 2	Other a				
Eu 152					Other b/g				
Eu 154					Total a	0		8.19E-07	BC 2
Eu 155					Total b/g	0		8.18E-04	BC 2

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3

C a factor of 10

D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate) 3 Derived activity (upper limit)

3 Derived activity (upper innit)
4 Not present
5 Present but not significant
6 Likely to be present but not assessed
7 Present in significant quantities but not determined
8 Not expected to be present in significant quantity