WASTE STREAM 2	N03 Plutonium Contaminated Material; Drummed (Operational Mixed Waste)		
SITE	LLWR (near Drigg)		
SITE OWNER	Nuclear Decommissioning Authority		
WASTE CUSTODIAN	LLWR SLC Limited		
WASTE TYPE	ILW; SPD1		
Is the waste subject to Scottish Policy:	Νο		
WASTE VOLUMES	Reported		
Stocks:	At 1.4.2022 360.6 m ³		
Total future arisings:	0 m³		
Total waste volume:	360.6 m ³		
Comment on volumes:	This stream (2N03) reflects the secondary soft waste drums from PCM operations and the hard waste drums from PCM decommissioning operations. All PCM drums have been generated from decommissioning activities on the LLWR Site and are currently undergoing re-assay to determine whether they are truly PCM. This includes the 12 drums identified in 2N17.		
Uncertainty factors on volumes:	Stock (upper):x 1.0Arisings (upper)xStock (lower):x 1.0Arisings (lower)x		
WASTE SOURCE	The PCM waste at LLWR is from the decomissioning of PCM facilities, contaminated due to the storage of PCM. The PCM at LLWR mainly originated from Sellafield, but significant amounts were from other UK nuclear installations e.g. Harwell and Aldermaston.		
PHYSICAL CHARACTERI	STICS		
General description:	The soft PCM waste consists of PPE and other operational wastes e.g. plastic gloves, air fed suits, hoses, boots, wipes, sizalcraft etc. The hard PCM waste consists of building fabric and redundent equipment contaminated above LLW levels. The waste will mainly comprise of scabbled concrete from the magaines and also from metal and wood fittings within the building as well as any metallic equipment that cannot be adequately monitored to prove it is not PCM. The PCM at LLWR mainly originated from Sellafield, but significant amounts were from other UK nuclear installations e.g. Harwell and Aldermaston. The waste has been size reduced for packing into drums.		
Physical components (%wt):	The overall waste composition is estimated to be metal (33%), concrete and brick (28%), PVC (17%), rubber - including neoprene (9%), cellulose (5%), bitumen (3%), wood (2%), other plastics (3%) (also <1% others (including glass)).		
Sealed sources:	The waste does not contain sealed sources.		
Bulk density (t/m ³):			
Comment on density:	For soft waste there are a range of densities of 0.01 - 0.1 te/m ³ . For hard waste a range of densities of 2 - 4 te/m ³ is typical. It depends on the drum content (whether it is concrete, metal or a mixture and how well it is packed). Drum weight limits will preclude very efficient packing		

CHEMICAL COMPOSITION

packing.

General description and components (%wt):	See physical characteristics.
Chemical state:	Alkali
Chemical form of radionuclides:	 H-3: Trace quanties could be present. C-14: Not expected to be present. Cl-36: Not expected to be present. Se-79: Not expected to be present. Tc-99: Not expected to be present. I-129: Not expected to be present. Ra: Trace quanties could be present. Th: Trace quanties could be present. U: Oxides, fluorides. Np: Trace quanties could be present. Pu: Nitrate, sulphide, fluoride or mixed oxides.
Metals and alloys (%wt):	No significant sheet metal is expected to be present as this can be decontaminated to LLW.

WASTE STREAM 2N03 Plutonium Contaminated Material; Drummed (Operational Mixed Waste)					
	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity		
Stainless steel	~33.0	Breakdown not estimated.	convity		
Other ferrous metals	NE				
Iron	NE				
Aluminium	NE				
Beryllium	NE				
Cobalt	NE				
Copper	NE				
Lead	. NE				
Magnox/Magnesium	. NE				
Nickel	NE				
Titanium	NE				
Uranium	NE				
Zinc	NE				
Zircaloy/Zirconium	NE				
Other metals	NE				
Organics (%wt): others includes bitu	men				
	(%wt)	Type(s) and comment	% of total C14		
Total cellulosics	~7.0		activity		
Paper, cotton	~5.0	Filters, covershoes, tyveks, wipes etc.			
Wood	~2.0	Wood building fittings.			
Halogenated plastics	~17.0	Assumed PVC and Neoprene.			
Total non-halogenated plastics	~3.0				
Condensation polymers	NE				
Others	~3.0	Types not known.			
Organic ion exchange materials	0				
Total rubber	~9.0				
Halogenated rubber	~9.0	Types not known; gloves, O- rings, neoprene			
Non-halogenated rubber	NE				
Hydrocarbons	~3.0	Captured as bitumen 3% below			
Oil or grease	NE				
Fuel	NE				
Asphalt/Tarmac (cont.coal tar)	NE				
Asphalt/Tarmac (no coal tar)	NE				
Bitumen	~3.0	Bitumen (removed from building structure)			
Others	NE				
Other organics	NE				

Other materials (%wt):

The concrete is estimated to contain ~1-2% brick.

2N03

Plutonium Contaminated Material; Drummed (Operational Mixed Waste)

% of total C14 activity

	(%wt)	Type(s) and comment
Inorganic ion exchange materials	0	
Inorganic sludges and flocs	0	
Soil	0	
Brick/Stone/Rubble	~2.0	
Cementitious material	~26.0	
Sand	0	
Glass/Ceramics	Р	glass (<1%)
Graphite	0	
Desiccants/Catalysts	0	
Asbestos	0	None found to date.
Non/low friable	0	
Moderately friable	0	
Highly friable	0	
Free aqueous liquids	0	
Free non-aqueous liquids	0	
Powder/Ash	0	

Inorganic anions (%wt):

If present at all, will be in negligible trace quantities.

(%wt)

Type(s) and comment

Fluoride	0
Chloride	0
lodide	0
Cyanide	0
Carbonate	0
Nitrate	0
Nitrite	0
Phosphate	0
Sulphate	0
Sulphide	0
Nitrite Phosphate Sulphate	0

Materials of interest for Waste materials are not expected to contain any of these properties, with the exception of active particles.

	(%wt)	Type(s) and comment
Combustible metals	0	Not expected.
Low flash point liquids	0	Not expected.
Explosive materials	0	Not expected.
Phosphorus	0	Not expected.
Hydrides	0	Not expected.
Biological etc. materials	0	Not expected.
Biodegradable materials	0	Not expected.
Putrescible wastes	0	Not expected.
Non-putrescible wastes	0	Not expected.

2022 Inventory

2N03

Plutonium Contaminated Material; Drummed (Operational Mixed Waste)

Corrosive materials	0	Not expected.
Pyrophoric materials	0	Not expected.
Generating toxic gases	0	Not expected
Reacting with water	0	Not expected
Higher activity particles	Р	Potentially present.
Soluble solids as bulk chemical compounds	0	Not expected.

Hazardous substances / non hazardous pollutants:

Only expected to be present within alloys (e.g. stainless steel).

	(%wt)	Type(s) and comment
Acrylamide	0	
Benzene	0	Not expected.
Chlorinated solvents	0	
Formaldehyde	0	
Organometallics	0	
Phenol	0	Not expected.
Styrene	0	
Tri-butyl phosphate	0	Not expected.
Other organophosphates	0	
Vinyl chloride	0	Not expected.
Arsenic	0	Not expected.
Barium	0	
Boron	0	Not expected.
Boron (in Boral)		
Boron (non-Boral)		
Cadmium	0	Not expected.
Caesium		
Selenium	0	Not expected.
Chromium	Р	Could be present in stainless steel alloy.
Molybdenum	Р	Could be present in stainless steel alloy.
Thallium	NE	
Tin	0	Not expected.
Vanadium	0	Not expected.
Mercury compounds	0	
Others	Р	
Electronic Electrical Equipment (EEE)	
ЕЕЕ Туре 1	NE	
EEE Type 2	NE	
EEE Type 3	NE	
EEE Type 4	NE	
EEE Type 5	NE	

Complexing agents (%wt): No

	(%wt)	Type(s) and comment
EDTA	NE	
DPTA	NE	
NTA	NE	
Polycarboxylic acids	NE	Not expected.
Other organic complexants	NE	Not expected.
Total complexing agents	0	

Potential for the waste to	Yes.	small hand held tools and size reduced fork lift truck parts are contained
contain discrete items:	withir	the drums and would be classed as discrete items.

PACKAGING AND CONDITIONING

Conditioning method:	Waste is in 200 L drums which will be supercompacted at Sellafield Limited at a future date. Six supercompacted (1.2 m3 of total compacted volume) pucks will be loaded within a 500 L drum and there will be a cement annulus between the basket and the drum skin. This conditioning work will be completed by Sellafield Limited and not LLWR.
Plant Name:	Engineered Drum Store (EDS).
Location:	Sellafield.
Plant startup date:	1997
Total capacity (m³/y incoming waste):	1761.0
Target start date for packaging this stream:	-
Throughput for this stream (m ³ /y incoming waste):	NE
Other information:	Decommissioning complete - all waste has been packaged in 200 litre drums and is being stored pending transfer to Sellafield Limited for long term storage.

Likely container type:	Container	Waste packaged (%vol)	Waste loading (m ³)	Payload (m ³)	Number of packages
	500 I drum (basket for waste)	100.0	~1.2	0.504	301

Likely container type comment:	As per current plant specification.
Range in container waste volume:	Between 1 and 9 compacted 200 L drums will be put into a 500 L drum (on average 6).
Other information on containers:	Stainless steel.
Likely conditioning matrix:	PFA/OPC;None
Other information:	-
Conditioned density (t/m ³):	~2.0
Conditioned density comment:	The density of the conditioned product will range from 1.5 to 2.6 t/m ³ for drums.
Other information on conditioning:	A modified WTC phase 1 (a super-compacting facility) began treating stored PCM and arisings in 1997.
Opportunities for alternative disposal routing:	Yes

```
2N03
```

Plutonium Contaminated Material; Drummed (Operational Mixed Waste)

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
Disposal at a Geological Disposal Facility	Disposal at LLWR	<<10.0	2023	Medium	The project has commenced and the 1000 drums assayed milestone was acheved in March 2022. Of the 1000 drums assayed, only 4 to date have been confirmed as HAW, with the remaining population being classed as LLW (<5%) and the remaining drums being classed as LA-LLW and VLLW. The BAT is to be concluded to confirm treatement and or disposal routes. It is anticipated that all LLW drums will be compacted. Prior to disposal in the LLWR Vault. Assessments of the data are due to commence in May 2022 (with the assumption that all 1808 drums will have completed assessments by the end of March 2023).
Disposal at a Geological Disposal Facility	Authorised landfill	<<85.0	2023	Medium	The project has commenced and the 1000 drums assayed milestone was acheved in March 2022. Of the 1000 drums assayed, only 4 to date have been confirmed as HAW, with the remaining population being classed as LLW (<5%) and the remaining drums being classed as LA-LLW and VLLW. The BAT is to be concluded to confirm treatement and or disposal routes. It is anticipated that all LLW drums will be compacted. Prior to disposal in the LLWR Vault. Assessments of the data are due to commence in May 2022 (with the assumption that all 1808 drums will have completed assessments by the end of March 2023).

RADIOACTIVITY

Source:	Material generated under the 2N03 waste stream has become Plutonium Contaminated (PCM) material through contact with PCM historically processed within the magazines. Additionally, Decommissioning Operations of the Magazines has also generated PCM.
Uncertainty:	All isotopic assay for PCM drums is carried out to produce a 'nuclear safety value' as required by the LLWR and Sellafield plant safety cases. Consequently a mean (accountancy) value is produced to which three standard deviations are added to provide 99% confidence in the final assay value for the drum contents. In addition to this, a factor of 8 is added to the U235 value to account for the U235 being in a discrete lump rather than a dispersed powder form. If no U235 is detected, a default value of 10g is attributed to the drum. Therefore, the overall fissile content reported for a drum is very pessimistic to ensure criticality safety. A factor of 10 uncertainty has been added to reflect uncertainty on the average, because the fingerprint will vary between drums. The fingerprint given here has been taken from the Waste Charactersiation Document.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	All drums are assayed on equipment that complies with modern standards. Each drum has an accountancy value (a mean) and a standard deviation. A nuclear safety value is derived from the mean and the standard deviations. Each drum is weighed and from this a specific activity can be determined. The fingerprint applied is based on the original PCM inventory retrieved from the magazines. As a best estimate it is assumed that the activity characterisation of the materials decommissioning will be similar to the original PCM waste, since this is where the contamination will have come from.
Other information:	The fingerprint has not been decayed.
	2022 Inventory

2N03

Plutonium Contaminated Material; Drummed (Operational Mixed Waste)

	Mean radioad	tivity, TBq/m³			Mean radioa	ctivity, TBq/m ³	
Nuclide	Waste at Bands and	Future Bands and	Nuclide	Waste at	Bands and	Future	Bands and
	1.4.2022 Code	arisings Code		1.4.2022	Code	arisings	Code
H 3 Be 10			Gd 153 Ho 163				
C 14			Ho 165 Ho 166m				
Na 22			Tm 170				
Al 26			Tm 170 Tm 171				
CI 36			Lu 174				
Ar 39			Lu 174 Lu 176				
Ar 42			Hf 178n				
K 40			Hf 182				
Ca 41			Pt 193				
Mn 53			TI 204				
Mn 54			Pb 205				
Fe 55			Pb 210				
Co 60			Bi 208				
Ni 59			Bi 210m				
Ni 63			Po 210				
Zn 65			Ra 223				
Se 79			Ra 225				
Kr 81			Ra 226	~2.78E-11	CC 5		
Kr 85			Ra 228				
Rb 87			Ac 227				
Sr 90			Th 227				
Zr 93			Th 228				
Nb 91			Th 229				
Nb 92			Th 230				
Nb 93m			Th 232				
Nb 94			Th 234				
Mo 93			Pa 231				
Tc 97			Pa 233				
Tc 99			U 232				
Ru 106			U 233				
Pd 107			U 234				
Ag 108m			U 235	~1.24E-06	CC 2		
Ag 110m			U 236				
Cd 109			U 238	~2.78E-11	CC 5		
Cd 113m			Np 237	~2.78E-11	CC 5		
Sn 119m			Pu 236				
Sn 121m			Pu 238	~9.75E-03	CC 2		
Sn 123			Pu 239	~7.75E-03	CC 2		
Sn 126			Pu 240	~1.17E-02	CC 2		
Sb 125			Pu 241	~1.04E+00	CC 2		
Sb 126			Pu 242	~1.12E-05	CC 2		
Te 125m			Am 241	~3.59E-02	CC 2		
Te 127m			Am 242m				
l 129			Am 243				
Cs 134			Cm 242				
Cs 135 Cs 137	~2.78E-11 CC 5		Cm 243 Cm 244				
Ba 133	~2.70=11 00 0		Cm 244 Cm 245				
La 137			Cm 245 Cm 246				
La 137 La 138			Cm 246 Cm 248				
Ce 144			Cff 249				
Pm 145			Cf 249 Cf 250				
Pm 145 Pm 147			Cf 250				
Sm 147			Cf 252				
Sm 151			Other a				
Eu 152			Other b/g				
Eu 154			Total a	~6.51E-02	CC 2	0	
Eu 155			Total b/g	~1.04E+00	CC 2	0	
	I				JU 2	i v	

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3 C a factor of 10

D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity