SITE	LLWR (near Drigg)			
SITE OWNER	Nuclear Decommissioning Authority			
WASTE CUSTODIAN	LLWR SLC Limited			
WASTE TYPE	ILW	ILW		
Is the waste subject to Scottish Policy:	No			
WASTE VOLUMES		Reported		
Stocks:	At 1.4.2022	34.7 m ³		
Total future arisings:		0 m³		
Total waste volume:		34.7 m ³		
Comment on volumes:	-			
Uncertainty factors on	Stock (upper): x 1.2	Arisings (upper) x		
volumes:	Stock (lower): x 0.8	Arisings (lower) x		
WASTE SOURCE	Historically, drums of waste from num	erous sites were consigned to the LLV		

Historically, drums of waste from numerous sites were consigned to the LLWR for interim storage, prior to transfer to Sellafield Ltd for storage and/or processing. During a detailed provenance investigation carried out during the early stages of the project, sufficient evidence was identified to suggest that the Legacy Drum population arrived at the LLWR Site at some point during the 1960's. Subsequent investigations identified that the drums may also contain uranium fluoride-based wastes.

PHYSICAL CHARACTERISTICS

General description:	There are 153 drums from an original inventory of 165, the other 12 of which will be transferred to Sellafield Limited and will be stored with their PCM, (Included as part of 2N03). Therefore, the waste stream covers the inventory of 153 drums only. The drums are 200 litre drums and contained various materials such as powders, sludges, plastics, cloths, soft bagged waste, unknown liquids, cloths and concrete (annulus). The drums were stripped down for sampling purposes, the outer drum was removed to reveal the concrete annulus of some of the drums. Other drums were subject to intrusive sampling with various tools and equipment.
Physical components (%vol):	Overall composition: Metals (3%), Plastics (3%), Wood (4%), Concrete (60%), various types of powders found within the drums (30%). 153 drums sampled found green powder 82%, brown powder 4.5%, yellow powder 3%, black sludge 1%, grey powder 0.5%, discrete bags of green and yellow powder 0.5%, PVC Sheeting, rags, fabric, lab waste and empty sample pots 5%, metallic waste, rubble and plant items 3%, wooden waste 0.5%.
Sealed sources:	The waste does not contain sealed sources. N/A
Bulk density (t/m ³):	~1.01
Comment on density:	Bulk density is based on an estimate of the total waste mass divided by the total waste volume.

CHEMICAL COMPOSITION

General description and components (%wt):	Metals (3%), Plastics (3%), Wood (4%), Concrete (60%), various types of powders found within the drums (30%).
Chemical state:	Alkali
Chemical form of radionuclides:	Tc-99: Present. Ra: Present as metals, oxides or other forms. Th: Present as metals, oxides or other forms. U: Oxides, fluorides. Np: Present as metals, oxides or other forms. Pu: Nitrate, sulphide, fluoride or mixed oxides.
Metals and alloys (%wt):	-

WASTE STREAM 2N17 Legacy Drums (Bulk)				
		(%wt)	Type(s) / Grade(s) with proportions	% of total C14
	Stainless steel			adavity
	Other ferrous metals	~3.0	Mild steel drums and misc. plant items/ tools.	
	Iron			
	Aluminium			
	Beryllium			
	Cobalt			
	Copper			
	Lead			
	Magnox/Magnesium			
	Nickel			
	Titanium			
	Uranium			
	Zinc			
	Zircaloy/Zirconium			
	Other metals			
Organics (%				
		(%wt)	Type(s) and comment	% of total C14 activitv
	Total cellulosics	~3.0		
	Paper, cotton			
	Wood	~3.0	Wooden waste within drums.	
	Halogenated plastics			
	Total non-halogenated plastics	~4.0		
	Condensation polymers			
	Others			
	Organic ion exchange materials			
	Total rubber			
	Halogenated rubber			
	Non-halogenated rubber			
	Hydrocarbons			
	Oil or grease			
	Fuel			
	Asphalt/Tarmac (cont.coal tar)			
	Asphalt/Tarmac (no coal tar)			
	Bitumen			
	Bitumen Others			

WASTE STREAM 2N17 Legacy Drums (Bulk)

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials			
Inorganic sludges and flocs			
Soil			
Brick/Stone/Rubble			
Cementitious material	~60.0	Enacapsulant material within the drums	
Sand			
Glass/Ceramics			
Graphite			
Desiccants/Catalysts			
Asbestos			
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids			
Free non-aqueous liquids			
Powder/Ash	~30.0	Various types of powders within the drums.	
Inorganic anions (%wt): -			
	(%wt)	Type(s) and comment	
Fluoride	~10.0	Uranium fluorides (UF4, UF6 and UO2F	2).
Chloride	NE		
lodide	NE		
Cyanide	NE		
Carbonate	NE		
Nitrate	NE		
Nitrite	NE		
Phosphate	NE		
Sulphate	NE		
Sulphide	NE		
Materials of interest for Uranium drums cor waste acceptance criteria:	ntain UFx c	ompounds	

	(%wt)	Тур
Combustible metals	NE	
Low flash point liquids	NE	
Explosive materials	NE	
Phosphorus	NE	
Hydrides	NE	
Biological etc. materials	NE	
Biodegradable materials	NE	
Putrescible wastes	NE	

t) Type(s) and comment

2022 Inventory

WASTE STREAM 2N17 Legacy Drums (Bulk)

Non-putrescible wastes	NE
Corrosive materials	NE
Pyrophoric materials	NE
Generating toxic gases	NE
Reacting with water	NE
Higher activity particles	NE
Soluble solids as bulk chemical compounds	NE

Hazardous substances / non hazardous pollutants:

Uranium drums contain UFx compounds.

	(%wt)	Type(s) and comment
Acrylamide	NE	
Benzene	NE	
Chlorinated solvents	NE	
Formaldehyde	NE	
Organometallics	NE	
Phenol	NE	
Styrene	NE	
Tri-butyl phosphate	NE	
Other organophosphates	NE	
Vinyl chloride	NE	
Arsenic	NE	
Barium	NE	
Boron	NE	
Boron (in Boral)		
Boron (non-Boral)		
Cadmium	NE	
Caesium	NE	
Selenium	NE	
Chromium	NE	
Molybdenum	NE	
Thallium	NE	
Tin	NE	
Vanadium	NE	
Mercury compounds	NE	
Others	NE	
Electronic Electrical Equipment (EEE)		
EEE Type 1	NE	
EEE Type 2	NE	
ЕЕЕ Туре 3	NE	
EEE Type 4	NE	
EEE Type 5	NE	

Complexing agents (%wt): No

	(%wt)	Type(s) and comment
EDTA	NE	
DPTA	NE	
NTA	NE	
Polycarboxylic acids	NE	
Other organic complexants	NE	
Total complexing agents	NE	

Potential for the waste to contain discrete items: Not yet determined. Treatment/ conditioning and disposal route to be determined to understand if discrete items are an issue.

PACKAGING AND CONDITIONING

Conditioning method:	To be determined-not yet known.
Plant Name:	To be determined-not yet known.
Location:	To be determined-not yet known
Plant startup date:	To be determined-not yet known.
Total capacity (m ³ /y incoming waste):	*
Target start date for packaging this stream:	-
Throughput for this stream (m ³ /y incoming waste):	NE
Other information:	BAT/ optioneering for the legacy drums has been re-instigated to enable delivery of an NDA Gate A report. A decision will be made (~Autumn 2022) whether we move into the credible options assessment for the 2N17 stream.

Likely container type:	Container	Waste packaged (%vol)	Waste loading (m ³)	Payload (m ³)	Number of packages
	Not specified	NE	NE	NE	

Likely container type comment:	To be determined -not yet known.
Range in container waste volume:	To be determined -not yet known.
Other information on containers:	Investigations are ongoing into suitable containers, should the drums require transportation off the LLWR site. UN Salvage drums are one option that are being reviewed for suitability.
Likely conditioning matrix:	Other
Other information:	To be determined -not yet known.
Conditioned density (t/m ³):	NE
Conditioned density comment:	To be determined -not yet known.
Other information on conditioning:	To be determined -not yet known.
Opportunities for alternative disposal routing:	Not yet determined

WASTE STREA	M 2N17	Legacy Dr	rums (Bulk)		
Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	-	-	-	-	-
RADIOACTIVITY					
Source:	The waste It is believ generated	e is a result of red that the dru d by the conve	historic processe ums originated fro rsion of uranium	s from external site om Westinghouse, hexafluoride.	es prior to transfer to the LLWR. Springfields and were

full population of drums has not been carried out.

credible options assessment for the 2N17 stream.

characterisation analysis.

Specific activites have been based on the sampling results of each drum. Drums have been grouped based on their provenance and characteristics. Phys-chem analysis of the

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

An intrusive sampling campaign took place and samples were dispatched to a lab for full

BAT/ optioneering for the legacy drums has been re-instigated to enable delivery of an NDA Gate A report. A decision will be made (~Autumn 2022) whether we move into the

Uncertainty:

Definition of total alpha

and total beta/gamma:

Measurement of

Other information:

radioactivities:

WASTE STREAM 2N17 Legacy Drums (Bulk)

	Mean radioactivity, TBq/m ³				Mean radioactivity. TBg/m ³				
	Waste at	Bands and	Future	Bands and		Waste at	Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code
H 3					Gd 153				
Be 10					Ho 163				
C 14					Ho 166m				
Na 22					Tm 170				
AI 26					IM 171				
CI 36					Lu 174				
AI 39 Ar 42					LU 170				
AI 42 K 40									
C_{2} 41					Dt 103				
Mn 53					TI 204				
Mn 54					Ph 205				
Fe 55					Pb 210	~1.65E-05	AA 1		
Co 60					Bi 208				
Ni 59					Bi 210m				
Ni 63					Po 210				
Zn 65					Ra 223				
Se 79					Ra 225				
Kr 81					Ra 226	~7.51E-06	AA 1		
Kr 85					Ra 228				
Rb 87					Ac 227				
Sr 90	~3.95E-03	AA 1			Th 227				
Zr 93					Th 228				
Nb 91					Th 229				
Nb 92					Th 230	~2.82E-04	AA 1		
Nb 93m					Th 232	~5.22E-06	AA 1		
Nb 94					Th 234				
Mo 93					Pa 231				
Tc 97					Pa 233				
Tc 99	~1.13E-02	AA 1			U 232				
Ru 106					U 233	~2.01E-06	AA 1		
Pd 107					0 234	~1.34E-03	AA 1		
Ag 108m					U 235	~5.74E-05			
					0 230	~3.20E-03			
Cd 113m					0 230 No 237	~1.19E-03			
Sn 119m					Pu 236	~2.19⊑-03			
Sn 121m					Pu 238	~4 12E-06	A A 1		
Sn 123					Pu 239	~2.05E-04			
Sn 126					Pu 240	~2.05E-04	AA 1		
Sb 125					Pu 241	~7.63E-05	AA 1		
Sb 126					Pu 242	~4.55E-06	AA 1		
Te 125m					Am 241	~1.28E-05	AA 1		
Te 127m					Am 242m				
l 129					Am 243				
Cs 134					Cm 242				
Cs 135					Cm 243				
Cs 137	~7.49E-06	AA 1			Cm 244				
Ba 133					Cm 245				
La 137					Cm 246				
La 138					Cm 248				
Ce 144					Cf 249				
Pm 145					Cf 250				
Pm 147					Cf 251				
Sm 147					Cf 252				
Sm 151					Other a				
Eu 152					Other b/g			-	
Eu 154					lotal a	~5.54E-03	AA 1	0	
Eu 155					Total b/g	~1.54E-02	AA 1	0	

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3 C a factor of 10

D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity