SITE Sellafield SITE OWNER **Nuclear Decommissioning Authority** **WASTE CUSTODIAN** Sellafield Limited LLW **WASTE TYPE** Is the waste subject to Scottish Policy: Nο **WASTE VOLUMES** Reported At 1.4.2022..... Stocks: $0 \, \text{m}^3$ Future arisings -1.4.2022 - 31.3.2023...... $0.6 \, \text{m}^{3}$ 1.4.2023 - 31.3.2024...... $0.6 \, \text{m}^3$ 1.4.2024 - 31.3.2025...... $0.6 \,\mathrm{m}^3$ 1.4.2025 - 31.3.2026....... $0.6 \, \text{m}^3$ 1.4.2026 - 31.3.2027...... $0.6 \, \text{m}^{3}$ Total future arisings: $3.1 \, \text{m}^3$ Total waste volume: $3.1 \, m^3$ Comment on volumes: Arisings are sourced from REM_TP_0116A and are based on the latest five-year forecasts from the Waste Forecasting database. Uncertainty information is notional. Uncertainty factors on Stock (upper): Arisings (upper) volumes: Stock (lower): Х Arisings (lower) x 0.5 **WASTE SOURCE** The waste arises as the result of a project to remove contaminated pipework from the turbine halls. PHYSICAL CHARACTERISTICS General description: The waste will predominately be metallic waste associated with redundant plant items. The waste has not undergone any changes since it was generated. Physical components (%wt): Metals (81%), Concrete/Rubble (14%), Soil (2.7%), Halogenated Plastics (2%), Hydrocarbons (0.2%) and Asbestos (0.1%) Sealed sources: The waste does not contain sealed sources. Bulk density (t/m³): 1.4 Comment on density: The total bulk density is derived from REM_TP_0016A and is based on lifetime mass and volume. CHEMICAL COMPOSITION General description and components (%wt): Metals (81%), Concrete/Rubble (14%), Soil (2.7%), Halogenated Plastics (2%), Hydrocarbons (0.2%) and Asbestos (0.1%) Chemical state: Neutral Chemical form of radionuclides: Metals and alloys (%wt): (%wt) Type(s) / Grade(s) with proportions % of total C14 activity Stainless steel..... Iron Aluminium...... 0 Beryllium...... 0 Cobalt..... Copper...... 0.54 Lead...... 0.56 | Magnox/Magnesium | . 0 | | | |----------------------------------|-------|---------------------|----------------| | Nickel | 0 | | | | Titanium | 0 | | | | Uranium | 0 | | | | Zinc | 0.02 | | | | Zircaloy/Zirconium | 0 | | | | Other metals | 0 | | | | Organics (%wt): | | | | | | (%wt) | Type(s) and comment | % of total C14 | | Total cellulosics | 0 | | activity | | Paper, cotton | 0 | | | | Wood | 0 | | | | Halogenated plastics | 2.0 | | | | Total non-halogenated plastics | 0 | | | | Condensation polymers | 0 | | | | Others | 0 | | | | Organic ion exchange materials | 0 | | | | Total rubber | 0 | | | | Halogenated rubber | 0 | | | | Non-halogenated rubber | 0 | | | | Hydrocarbons | 0.17 | | | | Oil or grease | 0 | | | | Fuel | 0 | | | | Asphalt/Tarmac (cont.coal tar) | 0 | | | | Asphalt/Tarmac (no coal tar) | 0 | | | | Bitumen | 0.17 | | | | Others | 0 | | | | Other organics | 0 | | | | Other materials (%wt): | | | | | | (%wt) | Type(s) and comment | % of total C14 | | Inorganic ion exchange materials | 0 | | activity | | Inorganic sludges and flocs | 0 | | | | Soil | 2.8 | | | | Brick/Stone/Rubble | 14.0 | | | | Cementitious material | 0 | | | | Sand | 0 | | | | Glass/Ceramics | 0 | | | | Graphite | 0 | | | | Desiccants/Catalysts | 0 | | | | Asbestos | 0.05 | | | | Non/low friable | 0.04 | | | | | Moderately friable | 0 | | |--------------------------|---|-------|---------------------| | | Highly friable | 0.01 | | | | Free aqueous liquids | 0 | | | | Free non-aqueous liquids | 0 | | | | Powder/Ash | 0 | | | Inorganic ar | nions (%wt): | | | | | | (%wt) | Type(s) and comment | | | Fluoride | 0 | | | | Chloride | 0 | | | | lodide | 0 | | | | Cyanide | 0 | | | | Carbonate | 0 | | | | Nitrate | 0 | | | | Nitrite | 0 | | | | Phosphate | 0 | | | | Sulphate | 0 | | | | Sulphide | 0 | | | Materials of waste accep | interest for -
otance criteria: | | | | | | (%wt) | Type(s) and comment | | | Combustible metals | 0 | | | | Low flash point liquids | 0 | | | | Explosive materials | 0 | | | | Phosphorus | 0 | | | | Hydrides | 0 | | | | Biological etc. materials | 0 | | | | Biodegradable materials | 0 | | | | Putrescible wastes | 0 | | | | Non-putrescible wastes | 0 | | | | Corrosive materials | 0 | | | | Pyrophoric materials | 0 | | | | Generating toxic gases | 0 | | | | Reacting with water | 0 | | | | Higher activity particles | 0 | | | | Soluble solids as bulk chemical compounds | 0 | | | | substances / -
ous pollutants: | | | | | | (%wt) | Type(s) and comment | | | Acrylamide | 0 | | | | Benzene | 0 | | | | Chlorinated solvents | 0 | | | Formaldehyde | 0 | | |---------------------------------------|-------|---------------------| | Organometallics | 0 | | | Phenol | 0 | | | Styrene | 0 | | | Tri-butyl phosphate | 0 | | | Other organophosphates | 0 | | | Vinyl chloride | 0 | | | Arsenic | 0 | | | Barium | 0 | | | Boron | 0 | | | Boron (in Boral) | 0 | | | Boron (non-Boral) | 0 | | | Cadmium | 0 | | | Caesium | 0 | | | Selenium | 0 | | | Chromium | 0 | | | Molybdenum | 0 | | | Thallium | 0 | | | Tin | 0 | | | Vanadium | 0 | | | Mercury compounds | 0 | | | Others | 0 | | | Electronic Electrical Equipment (EEE) | | | | EEE Type 1 | 0 | | | EEE Type 2 | 0 | | | EEE Type 3 | 0 | | | EEE Type 4 | 0 | | | EEE Type 5 | 0 | | | agents (%wt): Yes | | | | | (%wt) | Type(s) and comment | | EDTA | <0.01 | | | DPTA | 0 | | | NTA | 0 | | | Polycarboxylic acids | 0 | | | Other organic complexants | 0 | | | Total complexing agents | <0.01 | | | | | | Potential for the waste to contain discrete items: Complexing Not yet determined. #### TREATMENT, PACKAGING AND DISPOSAL Planned on-site / off-site treatment(s): | Treatment | On-site /
Off site | Stream volume % | |---|-----------------------|-----------------| | Low force compaction Supercompaction (HFC) Incineration Solidification Decontamination Metal treatment Size reduction Decay storage Recyling / reuse Other / various None | Off-site | 100.0 | Comment on planned treatments: All waste is assumed to be treated through the Off Site Metals route. $\label{eq:continuous}$ **Disposal Routes:** | Disposal Route | Stream volume % | Disposal
density t/m3 | |--|-----------------|--------------------------| | Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known | 100.0 | 1.4 | Classification codes for waste expected to be consigned to a landfill facility: ### Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above): | Disposal Route | Stream volume % | | | | |--|-----------------|---------|---------|--| | Disposal Route | 2022/23 | 2023/24 | 2024/25 | | | Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known | 100.0 | 100.0 | 100.0 | | Opportunities for alternative disposal routing: Not yet determined | | | | Estimated | | | |------------------|------------------|------------|------------------------------|-------------|---------| | Baseline | Opportunity | Stream | Date that | Opportunity | Comment | | Management Route | Management Route | volume (%) | Opportunity will be realised | Confidence | Comment | | | | | | | | Waste Packaging for Disposal: (Not applicable to this waste stream) | Container | Stream volume % | Waste loading m³ | Number of packages | |--|-----------------|------------------|--------------------| | 1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other | | | | Other information: - Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream) Container voidage: Waste Characterisation Form (WCH): _ Waste consigned for disposal to LLWR in year of generation: Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream) Stream volume (%): Waste stream variation: - Bounding cuboidal volume: Inaccessible voidage: - Other information: RADIOACTIVITY Source: The activity originates from plutonium contamination within the Calder cooling water system. The wastes are decommissioning wastes plus contaminated secondary wastes. Uncertainty: The uncertainty associated with the fingerprinting analysis is likely to be low, however the volumes and total activity information (and possibly some other assumptions) are likely to be more notional and thus more uncertain. Definition of total alpha and total beta/gamma: Measurement of radioactivities: Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'. Specific activity data is based on data in the corresponding WCH, which in turn maps an estimated total activity to an analytically derived radionuclide fingerprint. Other information: The radionuclides are based on the current WCH. | | Mean radioactivity, TBq/m³ | | | | Mean radioactivity, TBq/m³ | | | | | |------------------|----------------------------|-----------|----------|-----------|----------------------------|----------|-----------|----------|-----------| | | Waste at | Bands and | Future | Bands and | | Waste at | Bands and | Future | Bands and | | Nuclide | 1.4.2022 | Code | arisings | Code | Nuclide | 1.4.2022 | Code | arisings | Code | | H 3 | | | 3.58E-10 | CC 2 | Gd 153 | | | | | | Be 10 | | | | | Ho 163 | | | | | | C 14 | | | | | Ho 166m | | | | | | Na 22 | | | | | Tm 170 | | | | | | Al 26 | | | | | Tm 171 | | | | | | CI 36 | | | | | Lu 174 | | | | | | Ar 39 | | | | | Lu 174 | | | | | | | | | | | | | | | | | Ar 42 | | | | | Hf 178n | | | | | | K 40 | | | | | Hf 182 | | | | | | Ca 41 | | | | | Pt 193 | | | | | | Mn 53 | | | | | TI 204 | | | | | | Mn 54 | | | | | Pb 205 | | | | | | Fe 55 | | | 1.52E-09 | CC 2 | Pb 210 | | | | | | Co 60 | | | 1.17E-09 | CC 2 | Bi 208 | | | | | | Ni 59 | | | | | Bi 210m | | | | | | Ni 63 | | | 4.67E-10 | CC 2 | Po 210 | | | | | | Zn 65 | | | | | Ra 223 | | | | | | Se 79 | | | | | Ra 225 | | | | | | Kr 81 | | | | | Ra 226 | | | | | | Kr 85 | | | | | Ra 228 | | | | | | Rb 87 | | | | | Ac 227 | | | | | | Sr 90 | | | | | Th 227 | | | | | | Zr 93 | | | | | Th 228 | | | | | | Nb 91 | | | | | Th 229 | | | | | | Nb 92 | | | | | Th 230 | | | | | | Nb 93m | | | | | Th 232 | | | | | | Nb 94 | | | | | Th 234 | | | | | | Mo 93 | | | | | Pa 231 | | | | | | Tc 97 | | | | | Pa 233 | | | | | | | | | | | U 232 | | | | | | Tc 99 | | | | | U 233 | | | | | | Ru 106 | | | | | U 234 | | | | | | Pd 107 | | | | | | | | | | | Ag 108m | | | | | U 235 | | | | | | Ag 110m | | | | | U 236 | | | | | | Cd 109 | | | | | U 238 | | | | | | Cd 113m | | | | | Np 237 | | | | | | Sn 119m | | | | | Pu 236 | | | | | | Sn 121m | | | | | Pu 238 | | | 9.57E-09 | CC 2 | | Sn 123 | | | | | Pu 239 | | | 3.52E-07 | CC 2 | | Sn 126 | | | | | Pu 240 | | | 3.52E-07 | CC 2 | | Sb 125 | | | | | Pu 241 | | | 2.92E-07 | CC 2 | | Sb 126 | | | | | Pu 242 | | | | | | Te 125m | | | | | Am 241 | | | 1.30E-07 | CC 2 | | Te 127m | | | | | Am 242m | | | | | | l 129 | | | | | Am 243 | | | | | | Cs 134 | | | | | Cm 242 | | | | | | Cs 135 | | | | | Cm 243 | | | | | | Cs 137 | | | 2.79E-08 | CC 2 | Cm 244 | | | | | | Ba 133 | | | | | Cm 245 | | | | | | La 137 | | | | | Cm 246 | | | | | | La 138 | | | | | Cm 248 | | | | | | Ce 144 | | | | | Cf 249 | | | | | | Pm 145 | | | | | Cf 250 | | | | | | Pm 147 | | | | | Cf 251 | | | | | | Sm 147 | | | | | Cf 251 | | | | | | Sm 147
Sm 151 | | | | | Other a | | | | | | | | | | | | | | | | | Eu 152 | | | | | Other b/g | _ | | 0.425.07 | 00.0 | | Eu 154 | | | | | Total a | 0 | | 8.43E-07 | CC 2 | | Eu 155 | | | | | Total b/g | 0 | | 3.24E-07 | CC 2 | | <u> </u> | | | | • | Cada | | | - | | ### Bands (Upper and Lower) A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 100 Note: Bands quantify uncertainty in mean radioactivity. #### Code - 1 Measured activity - 2 Derived activity (best estimate) - 3 Derived activity (upper limit) - 4 Not present - 5 Present but not significant - 6 Likely to be present but not assessed - 7 Present in significant quantities but not determined 8 Not expected to be present in significant quantity