WASTE STREAM 3M117 Care and Maintenance Preparations: Gas Circulator

Maintenance - LLW

SITE Heysham 2

SITE OWNER **EDFE NGL**

WASTE CUSTODIAN EDFE NGL

LLW **WASTE TYPE**

Is the waste subject to

Scottish Policy:

Stocks:

Nο

WASTE VOLUMES

Reported

At 1.4.2022.....

Future arisings -1.4.2022 - 31.3.2031...... $0 \, \text{m}^3$ 1.4.2031 - 31.3.2032...... 580.0 m³

> 580.0 m³ 1.4.2032 - 31.3.2033......

Total future arisings: 1160.0 m³

Total waste volume: 1160.0 m³

Comment on volumes: Volumes based on Back to Bio Shield strategy. Work is ongoing looking at optimising the

strategy which could lead to a change in volume and timings of arisings across Pre C&M

 $0 \, \text{m}^3$

wastes (100s) and Final Site Clearance wastes (300s), in future submissions.

Uncertainty factors on

WASTE SOURCE

volumes:

Stock (upper): Χ Arisings (upper)

x 1.75

Stock (lower): Arisings (lower) x 0.25

Wastes arising from contamination and control procedures during plant dismantling from the gas circulators and gas circulator maintenance workshop.

PHYSICAL CHARACTERISTICS

General description: A variety of mixed decommissioning materials, including metals, organics and other mixed

materials.

Physical components (%wt): A variety of mixed decommissioning materials, including metals, organics and other mixed

materials.

Sealed sources: The waste does not contain sealed sources.

Bulk density (t/m3): ~1.105

Comment on density: Density based on raw volume and weight.

CHEMICAL COMPOSITION

General description and components (%wt):

A variety of mixed decommissioning materials, including metals, organics and other mixed

materials.

Chemical state: Neutral

Chemical form of H-3: To be Determined radionuclides: C-14: To be Determined

CI-36: To be Determined Se-79: To be Determined Tc-99: To be Determined I-129: To be Determined Ra: To be Determined Th: To be Determined U: To be Determined Np: To be Determined Pu: To be Determined

Metals and alloys (%wt): Not estimated

> % of total C14 (%wt) Type(s) / Grade(s) with proportions

activity

Stainless steel..... ~3.0

Other ferrous metals..... Mild steel ~15.0

Iron..... Aluminium.....

	Beryllium		NE		
	•				
	Magnox/Magnes	sium	. NE		
	Titanium		NE		
	Uranium		NE		
	Zinc		NE		
	Zircaloy/Zirconiu	ım	NE		
Organics (%	wt):			is wood, paper and cloth, non-haloge e contains halogenated plastic and ha	
			(%wt)	Type(s) and comment	% of total C14 activity
	Total cellulosics		~44.0		donvity
	Paper, cotton.		~44.0		
	Wood		0		
	Halogenated pla	stics	~12.0		
	Total non-haloge	enated plastics	~12.0		
	Condensation	polymers			
	Others				
	Organic ion excl	nange materials	0		
	Total rubber		~12.0		
	Halogenated r	ubber	~6.0		
	Non-halogena	ted rubber	~6.0		
	Hydrocarbons		NE		
	Oil or grease .				
	Fuel				
		ac (cont.coal tar)			
	Asphalt/Tarma	ac (no coal tar)			
	Bitumen				
	Others				
	Other organics		NE		
Other materi	als (%wt):	Other materials-inor	ganic slud	ge and rubble ~3.17%	
			(%wt)	Type(s) and comment	% of total C14 activity
	Inorganic ion ex	change materials	0		
	Inorganic sludge	es and flocs	~1.0		
	Soil		0		
	Brick/Stone/Rub	ble	~1.0		
	Cementitious ma	aterial	0		
	Sand		0		

Glass/Ceramics	0	
Graphite	0	
Desiccants/Catalysts	0	
Asbestos	0	
Non/low friable		
Moderately friable		
Highly friable		
Free aqueous liquids	0	
Free non-aqueous liquids	0	
Powder/Ash	0	
Inorganic anions (%wt): Inorganic anions like	ely to be b	elow 1% but not estimated
	(%wt)	Type(s) and comment
Fluoride	NE	
Chloride	NE	
lodide	NE	
Cyanide	NE	
Carbonate	NE	
Nitrate	NE	
Nitrite	NE	
Phosphate	NE	
Sulphate	NE	
Sulphide	NE	
Materials of interest for - waste acceptance criteria:		
	(%wt)	Type(s) and comment
Combustible metals	0	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	0	
Hydrides	0	
Biological etc. materials	0	
Biodegradable materials	0	
Putrescible wastes	0	
Non-putrescible wastes	9.0	
Corrosive materials	0	
Pyrophoric materials	0	
Generating toxic gases	0	
Reacting with water	0	
Higher activity particles	0	
Soluble solids as bulk chemical compounds	0	

Hazardous substances / non hazardous pollutants:

		(%wt)	Type(s) and comment
	Acrylamide	NE	
	Benzene	NE	
	Chlorinated solvents	NE	
	Formaldehyde	NE	
	Organometallics	NE	
	Phenol	NE	
	Styrene	NE	
	Tri-butyl phosphate	NE	
	Other organophosphates	NE	
	Vinyl chloride	NE	
	Arsenic	NE	
	Barium	NE	
	Boron	NE	
	Boron (in Boral)	NE	
	Boron (non-Boral)	NE	
	Cadmium	NE	
	Caesium	NE	
	Selenium	NE	
	Chromium	NE	
	Molybdenum	NE	
	Thallium	NE	
	Tin	NE	
	Vanadium	NE	
	Mercury compounds	NE	
	Others	NE	
	Electronic Electrical Equipment (EEE)		
	EEE Type 1	NE	
	EEE Type 2	NE	
	EEE Type 3	NE	
	EEE Type 4	NE	
	EEE Type 5	NE	
Complexing	agents (%wt): Not yet determined		
		(%wt)	Type(s) and comment
	EDTA	NE	
	DPTA	NE	
	NTA	NE	
	Polycarboxylic acids	NE	
	Other organic complexants	NE	
	Total complexing agents	NE	

Potential for the waste to contain discrete items:

Yes.

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %	
Low force compaction			
Supercompaction (HFC)	Off-site	~10.0	
Incineration	Off-site	~62.0	
Solidification			
Decontamination			
Metal treatment	Off-site	~15.0	
Size reduction			
Decay storage			
Recyling / reuse			
Other / various			
None	Off-site	~13.0	

Comment on planned treatments:

In line with the waste hierarchy, wastes will be treated preferentially by incineration, metal decontamination/melting, supercompaction, optimal packaging in HHISOs or immobilisation by encapsulation where necessary, prior to ultimate disposal at the LLW Repository. These treatments will be carried out off-site under contract with companies such as LLWR Ltd, Cyclife, Tradebe Inutec. The percentages are based on the history of consignments across the fleet of EDF Energy Nuclear Generation stations.

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository	~23.0	
Expected to be consigned to a Landfill Facility		
Expected to be consigned to an On-Site Disposal Facility		
Expected to be consigned to an Incineration Facility	~62.0	
Expected to be consigned to a Metal Treatment Facility	~15.0	
Expected to be consigned as Out of Scope		
Expected to be recycled / reused		
Disposal route not known		

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Noute	2022/23 2023/24 202		2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Opportunity Stream Date th Management Route Management Route volume (%) Will be rea	at Opportunity nity Confidence Comment
--	--

WASTE STREAM

3M117

Care and Maintenance Preparations: Gas Circulator Maintenance - LLW

Waste Packaging for Disposal:

Container	Stream volume %	Waste loading m³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other	23.0	~15.46	18

Other information: Waste loading is representative of the raw waste following further planned

treatments. Supercompaction assumed to reduce volume to 20% of original. Solidification assumed to increase volume to 300% of original. No treatment

results in the same volume.

Waste Planned for Disposal at the LLW Repository:

Container voidage:

Waste Characterisation

Form (WCH):

It is not yet determined if the waste meets LLWR's Waste Acceptance Criteria

(WAC).

Waste consigned for disposal to LLWR in year of generation:

Not yet determined.

Non-Containerised Waste for In-Vault Grouting:

Stream volume (%):

Waste stream variation:

Bounding cuboidal volume:

Inaccessible voidage: -

Other information:

RADIOACTIVITY

Source: Activation and/or contamination of mixed materials from facility area.

Uncertainty: Approximate estimates have been made of the total specific activities.

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed beta/gamma emitting radionuclides plus 'other beta/gamma' not listed on the

datasheet.

Measurement of radioactivities:

Calculations based on operational wastestreams. More detailed characterisation work will

be undertaken as the arising of the waste gets closer.

Other information: -

	Mean radioactivity, TBq/m³				Mean radioactivity, TBq/m³			
Nuclide	Waste at Bands and	Future	Bands and	Nuclide	Waste at	Bands and	Future	Bands and
	1.4.2022 Code	arisings	Code		1.4.2022	Code	arisings	Code
H 3		5.02E-05	CC 2	Gd 153				
Be 10 C 14		4.72E-06	CC 2	Ho 163 Ho 166m				
		4.72E-00	CC 2	Tm 170				
Na 22				Tm 170				
Al 26 Cl 36		6.52E-07	CC 2	Lu 174				
Ar 39		6.32E-07	CC 2	Lu 174 Lu 176				
Ar 42				Hf 178n				
K 40				Hf 182				
Ca 41				Pt 193				
Mn 53				TI 204				
Mn 54		5.68E-06	CC 2	Pb 205				
Fe 55		1.85E-04	CC 2	Pb 210				
Co 60		2.46E-05	CC 2	Bi 208				
Ni 59				Bi 210m				
Ni 63		1.53E-05	CC 2	Po 210				
Zn 65		3.34E-07	CC 2	Ra 223				
Se 79				Ra 225				
Kr 81				Ra 226				
Kr 85				Ra 228				
Rb 87				Ac 227				
Sr 90		1.13E-07	CC 2	Th 227				
Zr 93				Th 228				
Nb 91				Th 229				
Nb 92				Th 230				
Nb 93m				Th 232				
Nb 94		6.6E-09	CC 2	Th 234				
Mo 93				Pa 231				
Tc 97				Pa 233				
Tc 99				U 232				
Ru 106		1.81E-07	CC 2	U 233				
Pd 107				U 234				
Ag 108m		7.6E-09	CC 2	U 235 U 236				
Ag 110m		7.18E-08	CC 2	U 238				
Cd 109				Np 237				
Cd 113m				Pu 236				
Sn 119m				Pu 238			1.2E-09	CC 2
Sn 121m				Pu 239			8E-10	CC 2
Sn 123				Pu 240			2E-09	CC 2
Sn 126		1.045.07	00.0	Pu 241			9.8E-08	CC 2
Sb 125 Sb 126		1.04E-07	CC 2	Pu 242			3.32 00	5
Te 125m				Am 241			3.4E-09	CC 2
Te 125m				Am 242m				-
I 129				Am 243				
Cs 134		1.28E-07	CC 2	Cm 242			7.2E-09	CC 2
Cs 135		1.202 07	00 2	Cm 243				
Cs 137		3.81E-07	CC 2	Cm 244			2.6E-09	CC 2
Ba 133		3.82E-08	CC 2	Cm 245				
La 137		3.522 00		Cm 246				
La 138				Cm 248				
Ce 144		6.14E-08	CC 2	Cf 249				
Pm 145				Cf 250				
Pm 147		8.12E-08	CC 2	Cf 251				
Sm 147				Cf 252				
Sm 151				Other a				
Eu 152		1.74E-08	CC 2	Other b/g			1.48E-07	CC 2
Eu 154		1.82E-08	CC 2	Total a	0		1.74E-08	CC 2
Eu 155		9.4E-09	CC 2	Total b/g	0		2.88E-04	CC 2
	I	1				ı	1	

Bands (Upper and Lower)

A a factor of 1.5
B a factor of 3
C a factor of 10
D a factor of 100

D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

- 1 Measured activity
- 2 Derived activity (best estimate)
- 3 Derived activity (upper limit)
- 4 Not present
- 5 Present but not significant
- 6 Likely to be present but not assessed
- 7 Present in significant quantities but not determined
- 8 Not expected to be present in significant quantity