SITE	Dounreay		
SITE OWNER	Nuclear Decommissioning Authority		
WASTE CUSTODIAN	Dounreay Site Restoration Limited		
WASTE TYPE	ILW		
Is the waste subject to Scottish Policy:	Yes		
WASTE VOLUMES	F	Reported	
Stocks:	At 1.4.2022	0m ³	
Future arisings -	1.4.2028 - 31.3.2029 1.4.2029 - 31.3.2030 1.4.2030 - 31.3.2031 1.4.2031 - 31.3.2032 1.4.2032 - 31.3.2033	61.7 m ³ 184.6 m ³ 184.6 m ³ 123.4 m ³	
Total future arisings:		738.9 m ³	
Total waste volume:		738.9 m ³	
Comment on volumes:	The waste will be retrieved from a former disposal facility for packaging and interim storage at about 185 m3/year. Disposals to the Shaft have ceased. The volume quoted is the bulk volume of the solid waste. It is estimated that there is about 645 m3 of solid waste and about 93m3 of dry sludge.		
Uncertainty factors on volumes:	Stock (upper): x Stock (lower): x	Arisings (upper) x 1.05 Arisings (lower) x 0.95	
WASTE SOURCE	Miscellaneous waste disposals from all operations at Dounreay from 1959 to 1977, mainly from early reprocessing operations and supporting operations i.e. PIE etc. Additionally, there is waste from other sites notably HMS Vulcan and Harwell. Post 1977, some "special" waste was disposed of to the Shaft; this included large items and a number of breeder and dummy breeder elements.		
PHYSICAL CHARACTERIS	STICS		
General description:	A range of solid wastes is included in the waste stream. These are redundant metallic reactor components, metallic fuel element debris and cladding, redundant equipment and tools, discarded plastics from bag posting operations and wrappings on undrummed components and gaiters, and metallic components from plant decommissioning and refurbishment work. Small items include manipulator jaws and tools etc. The waste contains 23 sea disposal drums. These drums may be size reduced both for retrieval and packaging. Other large "special" items have been disposed of.		
Physical components (%vol):	Mild/stainless steel (57.2%), PVC (12.3%), aluminium (6.4%), concrete/rubble (5.0%), sludge/ash (4.2%), glass (2.7%), polythene (2.5%), paper (2.5%), wood (2.4%), other (4.8%).		
Sealed sources:	Not yet determined.		
Bulk density (t/m ³):	<4.3		
Comment on density:	The density of the waste has been det composition. This is assumed to be the	termined from the volume of waste and its e upper limit.	
CHEMICAL COMPOSITION	N		

General description and components (%wt):	Mild/stainless steel (46.65%), lead (4.9%), PVC (4.02%), aluminium (24.63%), concrete/rubble (0.57%), sludge/ash (3.35%), glass (4.59%), polythene (3.09%), paper (3.87%), wood (0.08%), others (4.25%).
Chemical state:	Neutral
Chemical form of radionuclides:	 H-3: May be present in stainless steel. Levels not expected to be significant. C-14: May be present in steels, PVC, polythene etc. Levels not expected to be significant. Cl-36: Not known to be present. Se-79: Likely to be present. I-29: Likely to be present. I-129: Likely to be present. Ra: Present as a bottle of radium chloride. Th: Not known to be present.

2022 Inventory

WASTE STREAM 5	B25 ILW Sha	aft (Con	tents)	
	Np: Likely to be pres	sent.	ved with Cr, Mo, Al, oxides and within the ranium and as cemented liquor.	sludge.
Metals and alloys (%wt):	in terms of thickness was alloyed with alu	ses and siz minium, cl	rums etc. in the Shaft. The construction of zes. The bulk metal items are also very van promium and molybdenum for various real stainless and mild steels is assumed.	aried. The uranium
		(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel		~23.3		2
Other ferrous me	etals	~23.3	Mild steel	
Iron				
Aluminium		~24.6	Most of the aluminium is likely to be present in small pieces from the milling of the cladding material	
Beryllium		Ρ		
Cobalt		NE		
Copper		TR		
Lead		TR		
Magnox/Magnes	sium	0.12		
Nickel		NE		
Titanium				
Uranium		Ρ		
Zinc		NE		
Zircaloy/Zirconiu	ım	Ρ		
Other metals		1.3	Given the varied operational history of the Shaft and the wastes disposed of, the presence of other metals cannot be discounted.	

Organics (%wt):

The waste contains various organic materials i.e. rubber gloves, PVC, paper, tissues, polythene, manipulator gaiters, grinding and polishing discs, polythene bottles, swabs, cardboard, cables etc. from glovebox operations. These wastes were usually contained in cans or bags. The presence of halogenated rubbers has yet to be confirmed. PVC is present.

	(%wt)	Type(s) and comment	% of total C14 activity
Total cellulosics	~4.0		activity
Paper, cotton	~3.9		
Wood	~0.08		
Halogenated plastics	~4.0		
Total non-halogenated plastics	~3.1		
Condensation polymers	0		
Others	~3.1		
Organic ion exchange materials	~0.06		
Total rubber	NE		
Halogenated rubber	NE		
Non-halogenated rubber	NE		
Hydrocarbons			
Oil or grease			
Fuel			

Asphalt/Tarmac (cont.coal tar)	
Asphalt/Tarmac (no coal tar)	
Bitumen	
Others	
Other organics	TR

Other materials (%wt):

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	NE		
Inorganic sludges and flocs	~3.4		
Soil	NE		
Brick/Stone/Rubble	Р		
Cementitious material	~0.57		
Sand			
Glass/Ceramics	~4.6		
Graphite	0		
Desiccants/Catalysts			
Asbestos	NE		
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids	Р		
Free non-aqueous liquids	Р		
Powder/Ash	NE		

Inorganic anions (%wt):

The weight percentage of inorganic anions is likely to be very low. It is known that CuSO4, SrCl2, RaCl2 and soda ash have been disposed of to the Shaft. High expansion foam was added to the Shaft. The presence of soaps and decontamination agents cannot be discounted. BaCO3 may have been added to the Shaft.

Type(s) and comment

	(%wt)
Fluoride	NE
Chloride	Ρ
lodide	NE
Cyanide	NE
Carbonate	TR
Nitrate	NE
Nitrite	NE
Phosphate	NE
Sulphate	TR
Sulphide	NE

Materials of interest for waste acceptance criteria:

It is possible that there are traces of sodium/potassium alloy present in the waste. It is known that zirconium alloys are present.

	(%wt)	Type(s) and comment
Combustible metals	NE	
Low flash point liquids	NE	
Explosive materials	0	
Phosphorus	0	
Hydrides	NE	
Biological etc. materials	0	
Biodegradable materials	0	
Putrescible wastes	0	
Non-putrescible wastes	NE	
Corrosive materials	0	
Pyrophoric materials	NE	
Generating toxic gases	NE	
Reacting with water	NE	
Higher activity particles	Р	Swarf from milling fuel
Soluble solids as bulk chemical compounds	NE	

Hazardous substances / non hazardous pollutants:

The presence of toxic metals has yet to be confirmed. However, if present amounts are likely to be low. Up to ~5 kg of liquid mercury may be present in sealed containers. The composition of the various sealed sources includes beryllium.

(%wt)	Type(s) and comment
()0000	

Acrylamide	
Benzene	NE
Chlorinated solvents	
Formaldehyde	
Organometallics	
Phenol	NE
Styrene	
Tri-butyl phosphate	NE
Other organophosphates	
Vinyl chloride	NE
Arsenic	NE
Barium	
Boron	NE
Boron (in Boral)	
Boron (non-Boral)	
Cadmium	NE
Caesium	
Selenium	NE
Chromium	NE
Molybdenum	NE
Thallium	
Tin	NE

2022 Inventory

Vanadium	NE
Mercury compounds	
Others	NE
Electronic Electrical Equipment (EEE)	
ЕЕЕ Туре 1	
EEE Type 2	
ЕЕЕ Туре 3	
ЕЕЕ Туре 4	
EEE Type 5	
agapta (% ut): Not yet determined	

Complexing agents (%wt): Not yet determined

	(%wt)
EDTA	
DPTA	
NTA	
Polycarboxylic acids	
Other organic complexants	
Total complexing agents	NE

Potential for the waste to No. contain discrete items:

PACKAGING AND CONDITIONING

Conditioning method:	Waste will be retrieved and segregated into sludge and solid components. The solids will be shredded and packaged into 200l drums. The sludge will be solidified in a 200l annular drum. The 200l drums will be supercompacted and packaged into 500ltr drums
Plant Name:	Shaft Retrieval and Processing Facility
Location:	Dounreay
Plant startup date:	2028
Total capacity (m³/y incoming waste):	~305.0
Target start date for packaging this stream:	2028
Throughput for this stream (m ³ /y incoming waste):	~185.0

Type(s) and comment

Other information:

Likely container type:	Container	Waste packaged (%vol)	Waste loading (m ³)	Payload (m³)	Number of packages
	500 l drum	100.0	0.500	0.5	1480

Likely container type comment:	-
Range in container waste volume:	There will be different waste loadings in the 500 I drum dependant if being used for compacted solids, non-compacted solids or sludge waste. Data presented is for compacted solids.
Other information on containers:	-

-

-

Likely conditioning m Other information:	atrix:	Not Specifi TBC	ed			
Conditioned density Conditioned density comment:	(t/m³):	~ -				
Other information on conditioning:		-				
Opportunities for alte disposal routing:	rnative	No				
Baseline Management Route		rtunity nent Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment

-

-

-

-

RADIOACTIVITY	
Source:	The main sources of activity are activated reactor components, activated and contaminated fuel element debris and cladding, and contaminated redundant equipment and small tools.
Uncertainty:	The specific activity is based on the estimated total activity divided by the volume of the waste.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	Records have been kept for fissile material which have been used to estimate the activity in the waste. No account of leaching from the waste into water routinely pumped from the Shaft has been considered. Activity derived from HIT Shaft Radionuclide Inventory. Values quoted are upper bound.
Other information:	Specific Activity uses UKRWI 2019 data decayed at 2022.

WASTE STREAM ILW Shaft (Contents) 5B25

	Mean radioa	ctivity, TBq/m ³			Mean radioactivity, TBq/m ³			
	Waste at Bands and	Future	Bands and		Waste at Bands and	Future	Bands and	
Nuclide	1.4.2022 Code	arisings	Code	Nuclide	1.4.2022 Code	arisings	Code	
H 3		<6.73E-04	A 3	Gd 153				
Be 10				Ho 163				
C 14		<8.32E-08	A 3	Ho 166m				
Na 22				Tm 170				
AI 26				Tm 171				
CI 36				Lu 174				
Ar 39				Lu 176				
Ar 42				Hf 178n				
K 40				Hf 182				
Ca 41				Pt 193				
Mn 53				TI 204				
Mn 54				Pb 205		5 005 40		
Fe 55				Pb 210		<5.80E-12	A 3	
Co 60		<1.57E-03	A 3	Bi 208				
Ni 59				Bi 210m		5.075.40		
Ni 63		<8.62E-11	A 3	Po 210		<5.27E-12	A 3	
Zn 65				Ra 223		<4.13E-09	A 3	
Se 79		<1.32E-07	A 3	Ra 225		<3.98E-14	A 3	
Kr 81				Ra 226		<3.75E-11	A 3	
Kr 85				Ra 228		<2.50E-15	A 3	
Rb 87		0 705 04		Ac 227		<4.30E-09	A 3	
Sr 90		<6.73E-01	A 3	Th 227		<4.14E-09	A 3	
Zr 93		<3.28E-05	A 3	Th 228		<1.93E-15	A 3	
Nb 91				Th 229		<4.01E-14	A 3	
Nb 92				Th 230		<1.02E-08	A 3	
Nb 93m		<2.95E-05	A 3	Th 232		<4.36E-15	A 3	
Nb 94		<1.33E-02	A 3	Th 234		<1.75E-05	A 3	
Mo 93				Pa 231		<4.74E-08	A 3	
Tc 97		0.075.00		Pa 233		<6.89E-07	A 3	
Tc 99		<2.67E-02	A 3	U 232				
Ru 106		<4.30E-13	A 3	U 233		<5.19E-11	A 3	
Pd 107		2.59E-07		U 234		<6.66E-05	A 3	
Ag 108m				U 235		<8.65E-06	A 3	
Ag 110m				U 236		<5.19E-06	A 3	
Cd 109				U 238		<1.75E-05	A 3	
Cd 113m		<2.54E-05	A 3	Np 237		<6.90E-07	A 3	
Sn 119m				Pu 236				
Sn 121m		<1.43E-04	A 3	Pu 238		<9.86E-04	A 3	
Sn 123				Pu 239		<7.35E-03	A 3	
Sn 126		<1.34E-06	A 3	Pu 240		<1.71E-03	A 3	
Sb 125		<2.28E-06	A 3	Pu 241		<4.85E-03	A 3	
Sb 126		<1.34E-06	A 3	Pu 242		1		
Te 125m		<5.38E-07	A 3	Am 241		<1.61E-03	A 3	
Te 127m		4 755 65		Am 242m				
l 129		<4.75E-07	A 3	Am 243				
Cs 134		<2.58E-07	A 3	Cm 242				
Cs 135		<1.8E-05	A 3	Cm 243				
Cs 137		<6.29E-01	A 3	Cm 244		1		
Ba 133				Cm 245		1		
La 137				Cm 246		1		
La 138				Cm 248				
Ce 144				Cf 249				
Pm 145		F 005 05		Cf 250				
Pm 147		<5.29E-05	A 3	Cf 251				
Sm 147		<1.16E-13	A 3	Cf 252				
Sm 151		<1.29E-02	A 3	Other a		<1.25E-08	A 3	
Eu 152		<5.97E-06	A 3	Other b/g		<2.32E+00	A 3	
Eu 154		<7.37E-04	A 3	Total a	0	<1.18E-02	A 3	
Eu 155		<8.65E-05	A 3	Total b/g	0	<3.68E+00	A 3	

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3

C a factor of 10 D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity 2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant 6 Likely to be present but not assessed

7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity