SITE Dounreay

SITE OWNER Nuclear Decommissioning Authority

WASTE CUSTODIAN Dounreay Site Restoration Limited

WASTE TYPE LLW

Is the waste subject to Scottish Policy:

No

WASTE VOLUMES

WASTE VOLUMES		Reported
Stocks:	At 1.4.2022	0 m³
Future arisings -	1.4.2022 - 31.3.2023	25.9 m³
	1.4.2023 - 31.3.2024	25.9 m³
	1.4.2024 - 31.3.2025	26.0 m³
	1.4.2025 - 31.3.2026	25.9 m³
	1.4.2026 - 31.3.2027	25.9 m³
	1.4.2027 - 31.3.2028	25.9 m³
	1.4.2028 - 31.3.2029	26.0 m³
	1.4.2029 - 31.3.2030	25.9 m³
	1.4.2030 - 31.3.2031	25.9 m³
	1.4.2031 - 31.3.2032	37.4 m³
	1.4.2032 - 31.3.2033	48.3 m³
	1.4.2033 - 31.3.2034	48.2 m³
	1.4.2034 - 31.3.2035	48.2 m³
	1.4.2035 - 31.3.2036	48.2 m³
	1.4.2036 - 31.3.2037	48.3 m³
	1.4.2037 - 31.3.2038	48.2 m³
	1.4.2038 - 31.3.2039	48.2 m³
	1.4.2039 - 31.3.2040	48.2 m³
	1.4.2040 - 31.3.2041	58.8 m³
	1.4.2041 - 31.3.2042	68.8 m³
	1.4.2042 - 31.3.2043	27.9 m³
Total future arisings:		812.0 m ³
Total waste volume:		812.0 m ³

Comment on volumes: It should be noted that the DSRL site programme is currently under review and future

arisings dates are subject to change. The arisings were revised in line with the plant waste inventory walk round exercise. Stocks will be captured under 5B15 and 5B16. A new decommissioning study is being undertaken which may impact on this waste stream.

x 1.2

x 0.8

Uncertainty factors on Stock (upper): x Arisings (upper) volumes: Stock (lower): x Arisings (lower)

WASTE SOURCE Demolished vessels, pipework and associated civil works from general plant

decommissioning.

PHYSICAL CHARACTERISTICS

General description: Waste is mostly building materials (cells) with smaller amounts of metal, plastic, rubber

etc. Large items will be size reduced during decommissioning.

Physical components (%vol): Asphalt (0.02%), Cementitious material (e.g. concrete) (15.13%), Fibreglass (2.91%), Lead

(1.40%), Mild Steel (15.24%), Other (2.52%), Paper (25.91%), Plastic (22.62%), Rubber (4.39%), Stainless steel (7.68%), Wood/ Wood composite (2.14%), Paper / Cardboard

(0.02%),

Sealed sources: Not yet determined.

Bulk density (t/m³): 0.28

Comment on density: The bulk density is based on D3100 Disposl Inventory Report - 2020

CHEMICAL COMPOSITION

General description and components (%wt):

Asphalt (0.02%), Cementitious material (e.g. concrete) (12.42%), Fibreglass (2.61%), Lead (5.43%), Mild Steel (40.98%), Other (0.86%), Paper (7.09%), Plastic (7.12%), Rubber

(2.28%), Stainless steel (20.66%), Wood/Wood composite (0.52%), Chemical state: Neutral Chemical form of H-3: Potentially present but at very low concentrations. C-14: Potentially present but at very low concentrations. radionuclides: CI-36: Not likely to be present Se-79: Potentially present but at very low concentrations. Tc-99: Potentially present but at very low concentrations. I-129: Potentially present but at very low concentrations. Ra: Potentially present but at very low concentrations Th: Potentially present but at very low concentrations U: Present at low concentrations as contamination (nitrate). Np: Potentially present but at very low concentrations. Pu: Present at low concentrations as contamination (nitrate). Metals and alloys (%wt): Metal in various shapes and thicknesses as items of process plant. % of total C14 (%wt) Type(s) / Grade(s) with proportions activity 20.7 Stainless steel..... Other ferrous metals..... 41.0 Iron..... Aluminium..... TR Beryllium..... Cobalt..... Copper..... Lead...... 5.4 Magnox/Magnesium..... 0 Nickel..... Titanium..... Uranium..... Zinc..... Zircaloy/Zirconium..... Other metals...... 0.87 Organics (%wt): The waste contains halogenated and non-halogenated plastic, rubber and paper. Type(s) and comment % of total C14 (%wt) activity Total cellulosics..... 7.6 Paper, cotton..... 7.1 Wood..... 0.52 Halogenated plastics 7.1 Total non-halogenated plastics..... Condensation polymers..... Others..... Organic ion exchange materials.... 0 Total rubber..... 23 Halogenated rubber 1.1 Non-halogenated rubber..... 1.1 Hydrocarbons..... 0.02 Oil or grease

Fuel.....

	Asphalt/Tarmac (cont.coal tar)	0.01		
	Asphalt/Tarmac (no coal tar)	0.01		
	Bitumen			
	Others			
	Other organics			
Other mater	ials (%wt):			
		(0/ 1)	T ()	0/ // 1044
		(%wt)	Type(s) and comment	% of total C14 activity
	Inorganic ion exchange materials			
	Inorganic sludges and flocs			
	Soil			
	Brick/Stone/Rubble			
	Cementitious material	12.4	Cementitious matieral	
	Sand			
	Glass/Ceramics	2.6	Fibreglass	
	Graphite			
	Desiccants/Catalysts			
	Asbestos			
	Non/low friable			
	Moderately friable			
	Highly friable			
	Free aqueous liquids			
	Free non-aqueous liquids			
	Powder/Ash			
Inorganic an	nions (%wt): Trace quantities of	inorganic a	nions may be present dependent on ope	erations undertaken.
		(%wt)	Type(s) and comment	
	Fluoride	NE		
	Chloride	NE		
	lodide	NE		
	Cyanide	0		
	Carbonate	NE		
	Nitrate	NE		
	Nitrite	NE		
	Phosphate	NE		
	Sulphate	NE		
	Sulphide	NE		

Materials of interest for waste acceptance criteria:

Asbestos is likely to be present.

		(%wt)	Type(s) and comment
	Combustible metals	0	
	Low flash point liquids	0	
	Explosive materials	0	
	Phosphorus	0	
	Hydrides	0	
	Biological etc. materials	0	
	Biodegradable materials	0	
	Putrescible wastes	0	
	Non-putrescible wastes	0	
	Corrosive materials	0	
	Pyrophoric materials	0	
	Generating toxic gases	0	
	Reacting with water	0	
	Higher activity particles	NE	
	Soluble solids as bulk chemical compounds	0	
Hazardous s			
		(%wt)	Type(s) and comment
	Acrylamide	(70111)	Typo(o) and common
	Benzene	NE	
	Chlorinated solvents		
	Formaldehyde		
	Organometallics		
	Phenol	NE	
	Styrene		
	Tri-butyl phosphate	NE	
	Other organophosphates		
	Vinyl chloride	NE	
	Arsenic	NE	
	Barium		
	Boron	NE	
	Boron (in Boral)		
	Boron (non-Boral)		
	Cadmium	NE	
	Caesium		
	Selenium	NE	
	Chromium	NE	
	Molybdenum	NE	
	Thallium		
	Tin	NE	
	Vanadium	NE	

2022 Inventory

Mercury compounds	
Others	NE
Electronic Electrical Equipme	nt (EEE)
EEE Type 1	
EEE Type 2	
EEE Type 3	
EEE Type 4	
EEE Type 5	
Complexing agents (%wt): No	
	(%wt) Type(s) and comment
EDTA	
DPTA	
NTA	
Polycarboxylic acids	
Other organic complexants	
Total complexing agents	0
	vaste has the POTENTIAL to contain durable

contain discrete items:

le engineered items

and/or contaminated hand tools.

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)	On-site	66.0
Incineration		
Solidification	On-site	100.0
Decontamination		
Metal treatment		
Size reduction		
Decay storage		
Recyling / reuse		
Other / various		
None		

Comment on planned treatments:

Uncompacted drums will be supercompacted before being placed in HHISOs. The waste will be encapsulated before final disposal. DSRL has begun trailling alternative waste treatment routes in particular Metal Treatment. These opportunites, however, are not yet fully established waste routes.

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known	100.0	

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Noute	2022/23 2023/24		2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing: Yes

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
Onsite disposal	Incineration	65.0	-	Low	This opportunity is still at an early stage of development. A small scale trial is expected to take place in FY22/23. The timing is dependent on the non-containerised waste tasks which will generate the wastes.
Onsite disposal	Metal treatment	10.0	2022	High	Trial is underway to open the Metal Treatment Route.

Waste Packaging for Disposal:

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other	100.0	16	51

Other information: The waste will be loaded into an alternative non-IP2 rated LLW Disposal

HHISO for transfer to the DSRL LLW Disposal Facility. Each HHISO may have

LLW items from other wastestreams in the final HHISO.

Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream)

Container voidage: -

Waste Characterisation

Form (WCH):

No.

Waste consigned for disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation:

Bounding cuboidal volume:

Inaccessible voidage:

Other information:

RADIOACTIVITY

Source: Contaminated/activated items/concrete from HAL storage plant.

Uncertainty: Within a factor of ten.

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

From Consignor's records

Other information: Specific activity has been taken from 2019 UKRWI decayed to 2022

	Mean radioactivity, TBq/m³			Mean radioactivity, TBq/m³				
Nuclide	Waste at Bands and	Future	Bands and	Nuclide	Waste at	Bands and	Future	Bands and
-	1.4.2022 Code	arisings	Code		1.4.2022	Code	arisings	Code
H 3 Be 10				Gd 153 Ho 163				
C 14				Ho 166m				
Na 22				Tm 170				
Al 26				Tm 170				
CI 36				Lu 174				
Ar 39				Lu 174 Lu 176				
Ar 42				Hf 178n				
K 40				Hf 182				
Ca 41				Pt 193				
Mn 53				TI 204				
Mn 54				Pb 205				
Fe 55				Pb 210				
Co 60				Bi 208				
Ni 59				Bi 210m				
Ni 63				Po 210				
Zn 65				Ra 223				
Se 79				Ra 225				
Kr 81				Ra 226				
Kr 85				Ra 228				
Rb 87				Ac 227				
Sr 90		7.97E-06	CC 2	Th 227				
Zr 93				Th 228				
Nb 91				Th 229				
Nb 92				Th 230				
Nb 93m				Th 232				
Nb 94				Th 234				
Mo 93				Pa 231				
Tc 97				Pa 233				
Tc 99		1.92E-08	CC 2	U 232			1.14E-11	CC 2
Ru 106		1.44E-09	CC 2	U 233			2.01E-12	CC 2
Pd 107				U 234			4.66E-08	CC 2
Ag 108m				U 235			8.79E-12	CC 2
Ag 110m				U 236			1.86E-11	CC 2
Cd 109				U 238			6.33E-09	CC 2
Cd 113m				Np 237				
Sn 119m				Pu 236				
Sn 121m				Pu 238			9.17E-06	CC 2
Sn 123				Pu 239			5.97E-07	CC 2
Sn 126		0.045.00	00.0	Pu 240			6.06E-07	CC 2
Sb 125		2.91E-09	CC 2	Pu 241			1.32E-05	CC 2
Sb 126		6 405 40	CC 2	Pu 242				00 -
Te 125m		6.49E-10	CC 2	Am 241			2.53E-06	CC 2
Te 127m I 129				Am 242m			1.20E-07	CC 2
Cs 134		2 /15 00	CC 2	Am 243			3.77E-09	CC 2
Cs 134 Cs 135		2.41E-09	00 2	Cm 242			1.00E-07	CC 2
Cs 135		2.34E-05	CC 2	Cm 243			2.58E-08	CC 2
Ba 133		2.046-03	00 2	Cm 244			7.91E-08	CC 2
La 137				Cm 245				
La 138				Cm 246				
Ce 144				Cm 248				
Pm 145				Cf 249 Cf 250				
Pm 147		2.61E-07	CC 2					
Sm 147		2.90E-18	CC 2	Cf 251				
Sm 151		1.19E-06	CC 2	Cf 252 Other a				
Eu 152		1.132-00	00 2	Other a Other b/g				
Eu 154		3.49E-07	CC 2	Total a	0		1 225 05	CC 2
Eu 155		4.43E-07	CC 2	Total a	0		1.32E-05 4.70E-05	CC 2
	Inner and Lawer		J J Z	Code	U		4./UE-U3	00 2

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100

E a factor of 1000

Bands quantify uncertainty in mean radioactivity.

Code

- 1 Measured activity

- 1 Measured activity
 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity