SITE	Dounreay		
SITE OWNER	Nuclear Decommissioning Authority		
WASTE CUSTODIAN	Dounreay Site Restoration Limited		
WASTE TYPE	LLW		
Is the waste subject to Scottish Policy:	No		
WASTE VOLUMES		Reported	
Stocks:	At 1.4.2022	0 m³	
Future arisings -	1.4.2030 - 31.3.2031 1.4.2031 - 31.3.2032 1.4.2032 - 31.3.2033 1.4.2033 - 31.3.2034 1.4.2034 - 31.3.2035 1.4.2035 - 31.3.2036 1.4.2036 - 31.3.2037	4355.9m ³ 6162.4m ³ 6179.3m ³ 6162.4m ³ 6162.4m ³ 6162.4m ³ 1705.2m ³	
Total future arisings:		36890.0 m ³	
Total waste volume:		36890.0 m ³	
Comment on volumes:	Approximately 33,620 m3 of waste has been previously disposed to the old LLW facility. However, it is also expected that the full capacity of each pit will be excavated, leading to a small increase in volume. The current strategy is to retrieve this waste and to repackage it before consigning it to the new LLW Facilities. Previous inventories assumed that half of the waste could be consigned as exempt waste however this waste category no longer exists and all the waste is now assumed to be consigned as LLW. The volume is based on historical disposal records.		
Uncertainty factors on volumes:	Stock (upper): x Stock (lower): x	Arisings (upper) Arisings (lower)	x 1.2 x 0.8
WASTE SOURCE	Historically LLW was disposed of to not meet current standards and it is into disposal containers and consig	shallow burial facilities at Dour anticipated that the waste will h ned to the new LLW facilities.	nreay. These facilities do pe retrieved, packaged

PHYSICAL CHARACTERISTICS

General description:	There is little detailed information available on the physical and chemical characteristics of the Pits wastes in addition to that given below. The types of waste disposed of comprises: building rubble; process plant material; protective materials (PVC and rubber gloves); metals; incinerator ash; cemented sludge; glassware; plastic; fabric; wood; paper and cardboard; filter materials (may contain some wood pulp); and low specific activity scale. The volumes of putrescible materials are low and amounts of methane generated through waste degradation are also expected to be low, especially since a LLW incinerator was operated from 1959 to 1997.
Physical components (%vol):	It is estimated that by volume there is 24% building rubble, 6% ash and filters, 40% PVC and rubber gloves and 30% metals (mostly steel and some lead bricks).
Sealed sources:	Not yet determined.
Bulk density (t/m ³):	~1
Comment on density:	The density is estimated to be around 1 te/m3, though no exact information is available.
	A

CHEMICAL COMPOSITION

General description and
components (%wt):Stainless steel (25%), other ferrous metals (25%), aluminium (0.13%), copper (1%), lead
(5%), asbestos (2.15%), halogenated plastics (1.2%), non-halogenated plastics (2.3%),
halogenated rubber (2.6%), cementitious rubble (26.8%), glass (8.5%), others (0.32%).

WASTE STREAM	5B358	Previously Disposed LLW to be Retrieved

Chemical sta	te:	Neutral			
Chemical forr radionuclides	n of :	 CI-36: Not likely to be present. Se-79: May be present as contamination. Tc-99: May be present as contamination. I-129: May be present in very small quantities. Ra: May be present as contamination. Th: May be present as contamination. U: May be present as contamination. Np: May be present as contamination. Pu: May be present as contamination. 			
Metals and al	loys (%wt):	-			
			(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
	Stainless steel		~25.0		,
	Other ferrous me	tals	~25.0		
	Iron				
	Aluminium		~0.13		
	Beryllium		TR		
	Cobalt		0		
	Copper		~1.0		
	Lead		~5.0		
Magnox/Magnesium		0			
	Nickel				
	Titanium				
	Uranium		Р		
	Zinc		NE		
	Zircaloy/Zirconiu	m	NE		
	Other metals		0.32	Other metals may be present	

Organics (%wt):

PVC sheets and bags. and Neoprene gloves.

Type(s) and comment

% of total C14 activity

	(%wt)
Total cellulosics	TR
Paper, cotton	TR
Wood	TR
Halogenated plastics	~1.2
Total non-halogenated plastics	~2.3
Condensation polymers	NE
Others	~2.3
Organic ion exchange materials	0
Total rubber	~2.6
Halogenated rubber	~2.6
Non-halogenated rubber	NE
Hydrocarbons	
Oil or grease	
Fuel	
Asphalt/Tarmac (cont.coal tar)	
Asphalt/Tarmac (no coal tar)	

Bitumen			
Other organics	Р		
Other materials (%wt):			
	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	0		
Inorganic sludges and flocs	0		
Soil	TR		
Brick/Stone/Rubble	NE		
Cementitious material	~26.8		
Sand			
Glass/Ceramics	~8.5		
Graphite	0		
Desiccants/Catalysts			
Asbestos	2.2		
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids	0		
Free non-aqueous liquids	0		
Powder/Ash	0		

Inorganic anions (%wt):

Possibly associated with trace contaminated items from potential historical spillages etc.

Type(s) and comment

	(%wt)
Fluoride	0
Chloride	0
lodide	0
Cyanide	0
Carbonate	0
Nitrate	TR
Nitrite	0
Phosphate	TR
Sulphate	0
Sulphide	0

Materials of interest for

Asbestos is present at about 2.15%.

waste acceptance criteria:

	(%wt)	Type(s) and comment
Combustible metals	0	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	0	
Hydrides	0	

2022 Inventory

Biological etc. materials	0
Biodegradable materials	0
Putrescible wastes	0
Non-putrescible wastes	
Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	0
Higher activity particles	NE
Soluble solids as bulk chemical compounds	NE

Hazardous substances / non hazardous pollutants:

Some lead is known to be present.

on hazardous	pollutants:	

	(%wt)
Acrylamide	
Benzene	NE
Chlorinated solvents	
Formaldehyde	
Organometallics	
Phenol	NE
Styrene	
Tri-butyl phosphate	NE
Other organophosphates	
Vinyl chloride	NE
Arsenic	NE
Barium	
Boron	NE
Boron (in Boral)	
Boron (non-Boral)	
Cadmium	TR
Caesium	
Selenium	NE
Chromium	NE
Molybdenum	NE
Thallium	
Tin	NE
Vanadium	NE
Mercury compounds	
Others	NE
Electronic Electrical Equipment (EEE)	
EEE Type 1	
EEE Type 2	
EEE Type 3	

Type(s) and comment

WASTE STREAM	5B358	Previously Disposed LLW to be Retrieved
--------------	-------	---

	EEE Type 4 EEE Type 5			
Complexing agents (%wt): Not yet determined				
			(%wt)	Type(s) and comment
E	DTA			
D	DPTA			
N	ТА			
P	olycarboxylic aci	ds		
0	ther organic com	nplexants		Possibly associated with potential historical spillages.
Т	otal complexing	agents	TR	
				- Caliba and the literature

Potential for the waste to contain discrete items:

Yes. Photographic evidence of discrete bulk items

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):	Treatment	On-sit Off s	te / ite	Stream volume %
	Low force compaction Supercompaction (HFC) Incineration			
	Solidification			
	Decontamination			
	Metal treatment			
	Size reduction			
	Decay storage			
	Recyling / reuse			
	None		100.0	
	None			100.0
Comment on planned treatments:	The treatment of the waste has not yet been fully anticipated that a range of characterisation and tre This may lead to alternative waste route options b be identified as project progresses.	determine eatment o eing avail	d, althoug ptions will able. Exac	h it is be deployed. t options will
Disposal Routes:	Disposal Route			Disposal density t/m3
	Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope			1.0
	Expected to be recycled / reused Disposal route not known			

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

-

Dispessel Bouto	Stream volume %				
	Stream volume % 2022/23 2023/24 2024	2024/25			
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing: Yes

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
Onsite disposal	Onsite disposal	100.0	31/03/2032	Medium	DSRL site reference position is to retrieve the LLW pits waste however an opportunity exists for the waste to remain in situ.

Waste Packaging for Disposal:

Container	Stream volume	Waste loading	Number of
	%	m ³	packages
 1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other 	100.0	10	3689

Other information:

DSRL now uses a non IP2 rated alternative HHISO container for use between DSRL site and the LLW Disposal Facility.

Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream)

Container voidage:

Waste Characterisation Form (WCH):

Waste consigned for disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):	-
Waste stream variation:	-
Bounding cuboidal volume:	
Inaccessible voidage:	-
Other information:	-

RADIOACTIVITY

Source:

Radionuclide Speicifc Activity data was taken from NLLWF/3/REP/GAL/0985/IS/02 - Table 10.1. This information has come from a comparison of older studies, borehole sample data, and DRWI 2012.

Uncertainty:	Within a factor of three.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma
Measurement of radioactivities:	Radionuclide data was divided by the total volume of the LLW Pits. It has also been decayed from 2014 (the year of the Galsons report) to 2022
Other information:	There are no unlisted radionuclides present at significant concentrations.

	Mean radioactivity, TBq/m ³					Mean radioactivity, TBg/m ³			
Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code	Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code
H 3					Gd 153			<u> </u>	
Be 10					Ho 163				
C 14					Ho 166m		l		
Na 22					Tm 170		l		
AI 26					Tm 171		l		
CI 36					Lu 174		l		
Ar 39					Lu 176		l		
Ar 42					Hf 178n		l		
K 40					Ht 182		l		
Ca 41 Ma 53					Pt 195 TL 204		l		
Mn 54					Dh 205		l		
Fe 55					Ph 210		l	1.34E-07	BB 2
Co 60			6.51E-08	BB 2	Bi 208			1.012 07	
Ni 59			4.01E-08	BB 2	Bi 210m		l		
Ni 63			2.80E-06	BB 2	Po 210		l	1.3E-07	BB 2
Zn 65					Ra 223		l	-	
Se 79			7.73E-10	BB 2	Ra 225		l		
Kr 81	İ				Ra 226		l	2.92E-07	BB 2
Kr 85					Ra 228		l	8.04E-09	BB 2
Rb 87					Ac 227		l	5.02E-12	BB 2
Sr 90			5.54E-05	BB 2	Th 227		l		
Zr 93			5.07E-09	BB 2	Th 228		l	1.18E-08	BB 2
Nb 91					Th 229		l	5.37E-18	BB 2
Nb 92					Th 230		l	6.94E-10	BB 2
Nb 93m			3.77E-09	BB 2	Th 232		l	2.50E-16	BB 2
Nb 94	ļ		1.22E-08	BB 2	Th 234		l		
Mo 93					Pa 231		l	4.46E-11	BB 2
Tc 97					Pa 233		l		
Tc 99			3.33E-08	BB 2	U 232		l		
Ru 106			1.005 10	20.0	U 233		l	9.00E-15	BB 2
Pd 107			4.69E-10	BB 2	U 234		l	1.08E-05	BB 2
Ag 100m					U 235		l	3.01E-07	BB 2
Cd 109					U 230		l	1.240-07	
Cd 113m					U 230 No 227		ļ	1.03E-07	BB ∠ BB 2
Sn 119m					Du 236		l	3.40∟-11	
Sn 121m					Pu 238		l	2 30E-06	BB 2
Sn 123					Pu 239		l	1 68E-05	BB 2
Sn 126			5.69E-09	BB 2	Pu 240			6.51E-06	BB 2
Sb 125			1.12E-10	BB 2	Pu 241		l	5.57E-05	BB 2
Sb 126					Pu 242		l	2.52E-09	BB 2
Te 125m					Am 241		l	7.40E-06	BB 2
Te 127m					Am 242m		l	7.83E-08	BB 2
l 129			6.26E-11	BB 2	Am 243		i	İ	
Cs 134			1.53E-11	BB 2	Cm 242		l	6.47E-08	BB 2
Cs 135			3.33E-09	BB 2	Cm 243		İ	İ	
Cs 137	ļ		7.05E-05	BB 2	Cm 244		l		
Ba 133					Cm 245		I		
La 137					Cm 246		I		
La 138					Cm 248		I		
Ce 144					Cf 249		I		
Pm 145					Cf 250		I		
Pm 14/			2.69E-09	BB 2	Cf 251		I		
Sm 147			5.01E-18	BB 2	Cf 252		I		
Sm 151			5.00E-06	BB 2	Other a		I		
Eu 152			8.11E-U6	BB 2	Other b/g		I		
EU 154			2.64E-07	BB 2	Total a	0		4.54E-05	BB 2
EU 155			2.82E-08	BB 2	Total b/g	0		1.98E-04	BB 2

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3

C a factor of 10 D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined 8 Not expected to be present in significant quantity