SITE Harwell

SITE OWNER Nuclear Decommissioning Authority

WASTE CUSTODIAN Magnox Limited

WASTE TYPE LLW

Is the waste subject to

Scottish Policy:

Nο

WASTE VOLUMES

Total waste volume: 945.1 m³

Comment on volumes: Volumes updated for 2016 RWI to reflect SMART Inventory Review. This stream originally

included VLLW/LA-LLW but this is now included under stream 5C325.

Uncertainty factors on Stock (upper): x 1.3 Arisings (upper) x 1.3 volumes: Stock (lower): x 0.7 Arisings (lower) x 0.7

WASTE SOURCE Radiochemistry laboratory decommissioning waste.

PHYSICAL CHARACTERISTICS

General description: Material development and examination laboratory. Miscellaneous items from

decommissioning of cells, gloveboxes, ventilation systems and pipework. Large items, e.g. gloveboxes, are size reduced for consignment as waste. Waste volumes will be minimised by a number of techniques (size reduction, segregation, packing efficiency, compaction of

soft wastes, etc.).

Physical components (%vol): Concrete/brick/plaster (65.6%), bitumen (0.7%), AIB/ACM/MMMF (0.1%), Fibreboard

(0.5%), wood (1%), Metals (29.5%), glass (0.07%), hard plastics (1.9%), ceramic (0.03%),

lino (0.06%). This is a typical volume % breakdown but will vary according to the

decommissioning process employed. Painted-in radioactivity and heavily contaminated

structures will generate materials such as contaminated plaster and concrete.

Sealed sources: The waste does not contain sealed sources.

Bulk density (t/m³): ~3

Comment on density: The density of the waste stream varies between 0.6 and 11.3 t/m³.

CHEMICAL COMPOSITION

General description and

components (%wt):

Concrete/brick/plaster (65.6%), bitumen (0.7%), AIB/ACM/MMMF (0.1%), Fibreboard (0.5%), wood (1%), Metals (29.5%), glass (0.07%), hard plastics (1.9%), ceramic (0.03%),

lino (0.06%).

Chemical state: Neutral

Chemical form of

H-3: Unknown

radionuclides: C-14: C-

C-14: C-14 is associated with organic compounds.

CI-36: Unknown Tc-99: Unknown I-129: Unknown Ra: Unknown

Th: The chemical form of thorium is unknown but probably comprises of mainly oxide with

small amounts of nitrates.

U: The chemical form of uranium is unknown but probably comprises mainly oxide and

metal with small amounts of nitrates.

Np: The chemical form of neptunium is unknown but will probably be present mainly in

oxide or nitrate form.

Pu: The chemical form of plutonium is unknown but probably comprises of mainly oxide

with small amounts of nitrates.

Metals and alloys (%wt): Metal is present in a large range of thicknesses.

	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel			activity
Other ferrous metals			
Iron			
Aluminium			
Beryllium			
Cobalt			
Copper			
Lead			
Magnox/Magnesium	•		
Nickel			
Titanium			
Uranium			
Zinc			
Zircaloy/Zirconium			
Other metals	29.5	Metal type has not been determined	
		total plastics content is about 2%. Haloge n polymers are bakelite and others are per	
	(%wt)	Type(s) and comment	% of total C14
Total cellulosics	1.0		activity
Paper, cotton			
Wood	1.0		
Halogenated plastics	1.0	PVC and PTFE	
Total non-halogenated plastics	0.90		
Condensation polymers	0.50	bakelite	
Others	0.40	perspex	
Organic ion exchange materials	0		
Total rubber	NE		
Halogenated rubber	NE		
Non-halogenated rubber	NE		
Hydrocarbons	0.70		
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen	0.70		
Others			
Other organics	NE		
Other materials (%wt):			

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	0		douvny
Inorganic sludges and flocs	0.60		
Soil	0		
Brick/Stone/Rubble	65.6		
Cementitious material	0		
Sand			
Glass/Ceramics	0.10	0.03% ceramic, 0.07% glass	
Graphite	0		
Desiccants/Catalysts			
Asbestos	~0.10		
Non/low friable	~0.10		
Moderately friable			
Highly friable			
Free aqueous liquids	0		
Free non-aqueous liquids	TR		
Powder/Ash	0		
Inorganic anions (%wt): None present.			
	(%wt)	Type(s) and comment	
Fluoride	0		
Chloride	0		
lodide	0		
Cyanide	0		
Carbonate	0		
Nitrate	0		
Nitrite	0		
Phosphate	0		
Sulphate	0		
Sulphide	0		
Materials of interest for Asbestos may be p waste acceptance criteria:	oresent as p	oipe lagging. Combustible metals co	mprise uranium.
	(%wt)	Type(s) and comment	
Combustible metals	TR		
Low flash point liquids	0		
Explosive materials	0		
Phosphorus	0		
Hydrides	0		
Biological etc. materials			
G .	0		
Biodegradable materials	0		

Non-putrescible wastes.....

0		_
Corrosive materials	0	
Pyrophoric materials	0	
Generating toxic gases	0	
Reacting with water	0	
Higher activity particles		
Soluble solids as bulk chemical compounds		
Hazardous substances / Lead is present as a be present in the way		imony and cadmium may be present and asbestos is likely to
	(%wt)	Type(s) and comment
Acrylamide		
Benzene		
Chlorinated solvents		
Formaldehyde		
Organometallics		
Phenol		
Styrene		
Tri-butyl phosphate		
Other organophosphates		
Vinyl chloride		
Arsenic		
Barium		
Boron	0	
Boron (in Boral)		
Boron (non-Boral)		
Cadmium		
Caesium		
Selenium		
Chromium		
Molybdenum		
Thallium		
Tin		
Vanadium		
Mercury compounds		
Others		
Electronic Electrical Equipment (EEE	Ξ)	
EEE Type 1		
EEE Type 2		
EEE Type 3		
EEE Type 4		
EEE Type 5		

Complexing agents (%wt):	Yes				
		(%wt)	Type(s) and com	ment	
EDTA					
DPTA					
NTA					
Polycarboxylic	acids				
Other organic	complexants				
Total complexi	ng agents	TR			
Potential for the waste to contain discrete items:				stream may incl	ude DIs
TREATMENT, PACKAGING	AND DISPOSAL				
Planned on-site / off-site treatment(s):	Treatment			On-site / Off site	Stream volume
	Low force compac	tion			
	Supercompaction	(%wt) Type(s) and comment (***Example of the comment of the co			
	Incineration			Off-site	~5.0
	Solidification				~1.0
	Decontamination				
	Metal treatment			Off-site	~18.0
	Size reduction				
	Decay storage				
	Recyling / reuse				
	Other / various	Other / various			

Comment on planned treatments:

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository	45.0	3.0
Expected to be consigned to a Landfill Facility	32.0	3.0
Expected to be consigned to an On-Site Disposal Facility		
Expected to be consigned to an Incineration Facility	5.0	0.40
Expected to be consigned to a Metal Treatment Facility	18.0	1.4
Expected to be consigned as Out of Scope		
Expected to be recycled / reused		
Disposal route not known		

Classification codes for waste expected to be consigned to a landfill facility:

17 04 07, 17 02 01, 17 02 02, 17 02 03, 17 01 07, 17 06 01*/17 06 04

71.0

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

None

Stream volume %			
2022/23	2023/24	2024/25	
	2022/23		

Opportunities for alternative disposal routing:

Baseline Opportunity Stream Opportunity Opportunity Opportunity Confidence Comment

Waste Packaging for Disposal:

Container	Stream volume %	Waste loading m³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO			
1/2 Height WAMAC IP-2 ISO	5.0	21.6	3
1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding)	40.0	10	38
4m box (no shielding)			
Other			

Other information: 21.6m3 loading volume is calculated based on the fact that you can fit 36 off

(200 litre/0.2m3) drums (7.2m3) into a ½ height ISO, each drum can be supercompacted to a 1/3 of its original volume so therefore we can get 3 x the amount of un-compacted drums into the final disposal container (21.6m3).

The waste meets the LLWR's Waste Acceptance Criteria (WAC).

Waste Planned for Disposal at the LLW Repository:

Container voidage: <10%

Waste Characterisation

Form (WCH): The waste does not have a current WCH.

Waste consigned for

disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation:

Bounding cuboidal volume:

Inaccessible voidage: -

Other information: -

RADIOACTIVITY

Source: Contamination from wide range of historic operations. Some additional contamination will

be introduced from planned waste management operations.

Uncertainty:

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

Individual fingerprints for each facility created from combination of measurements and assessment/ modelling. These have been combined to provide an overall estimate of

future arisings, based on past experience.

Other information:

	Mean radioactivity, TBq/m³				Mean radioactivity, TBq/m³				
Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code	Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code
H 3	2.68E-09	BC 2	2.68E-09	BC 2	Gd 153		8		8
Be 10		8		8	Ho 163		8		8
C 14		8		8	Ho 166m		8		8
Na 22		8		8	Tm 170		8		8
Al 26		8		8	Tm 171		8		8
CI 36	3.4E-09	BB 2	3.4E-09	BB 2	Lu 174		8		8
Ar 39		8		8	Lu 176		8		8
Ar 42		8		8	Hf 178n		8		8
K 40		8		8	Hf 182		8		8
Ca 41		8		8	Pt 193		8		8
Mn 53		8		8	TI 204		8		8
Mn 54		8		8	Pb 205		8		8
Fe 55	6.31E-08	BC 2	6.31E-08	BC 2	Pb 210	1.39E-08	BB 2	1.39E-08	BB 2
Co 60	3.13E-09	BC 2	3.13E-09	BC 2	Bi 208		8		8
Ni 59		8		8	Bi 210m		8		8
Ni 63	2.1E-06	BB 2	2.1E-06	BB 2	Po 210	1.39E-08	BB 2	1.39E-08	BB 2
Zn 65		8		8	Ra 223		8		8
Se 79		8		8	Ra 225		8		8
Kr 81		8		8	Ra 226	1.55E-08	BB 2	1.55E-08	BB 2
Kr 85	4.01E-08	BB 2	4.01E-08	BB 2	Ra 228	1.89E-08	BB 2	1.89E-08	BB 2
Rb 87		8		8	Ac 227		8		8
Sr 90	2.44E-04	BB 2	2.44E-04	BB 2	Th 227		8		8
Zr 93		8		8	Th 228	1.61E-08	BB 2	1.61E-08	BB 2
Nb 91		8		8	Th 229		8		8
Nb 92		8		8	Th 230		8		8
Nb 93m		8		8	Th 232	2.47E-08	BB 2	2.47E-08	BB 2
Nb 94		8		8	Th 234	8.32E-09	BB 2	8.32E-09	BB 2
Mo 93		8		8	Pa 231		8		8
Tc 97		8		8	Pa 233		8		8
Tc 99	5.53E-09	BB 2	5.53E-09	BB 2	U 232		8		8
Ru 106		8		8	U 233	0.045.00	8	0.045.00	8
Pd 107		8		8	U 234	3.81E-08	BB 2	3.81E-08	BB 2
Ag 108m		8		8	U 235	1.23E-09	BB 2	1.23E-09	BB 2
Ag 110m		8		8	U 236	0.005.00	8	0.005.00	8
Cd 109 Cd 113m		8 8		8	U 238	8.32E-09	BB 2	8.32E-09	BB 2
				8	Np 237		8		8
Sn 119m Sn 121m		8 8		8 8	Pu 236	4 525 04	8	4 525 04	8
Sn 121111 Sn 123		8		8	Pu 238	1.53E-04	BB 2	1.53E-04	BB 2 BB 2
Sn 126		8		8	Pu 239	2.63E-04	BB 2	2.63E-04	
Sb 125		8		8	Pu 240	2.04E-04	BB 2	2.04E-04	BB 2
Sb 125 Sb 126		8		8	Pu 241	6.17E-03	BB 2 BB 2	6.17E-03	BB 2 BB 2
Te 125m		8		8	Pu 242 Am 241	1.03E-07 5.86E-04	BB 2	1.03E-07 5.86E-04	BB 2
Te 125m		8		8	Am 241 Am 242m	J.00E-04	8 B	J.00E-04	8 8
I 129		8		8	Am 242m Am 243		8		8
Cs 134		8		8	Cm 242		8		8
Cs 135		8		8	Cm 242		8		8
Cs 137	2.03E-06	BC 2	2.03E-06	BC 2	Cm 244	2.9E-08	BB 2	2.9E-08	BB 2
Ba 133		8		8	Cm 244	2.36-00	8 B	2.36-00	8 8
La 137		8		8	Cm 246		8		8
La 138		8		8	Cm 248		8		8
Ce 144		8		8	Cff 249		8		8
Pm 145		8		8	Cf 249 Cf 250		8		8
Pm 147		8		8	Cf 251		8		8
Sm 147		8		8	Cf 252		8		8
Sm 151	5.11E-09	BB 2	5.11E-09	BB 2	Other a		5		Ü
Eu 152		8		8	Other b/g				
Eu 154	9.34E-09	BB 2	9.34E-09	BB 2	Total a	1.21E-03	BB 2	1.21E-03	BB 2
Eu 155		8		8	Total b/g	6.42E-03	BB 2	6.42E-03	BB 2
<u> </u>		ı					-		

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000

Bands quantify uncertainty in mean radioactivity.

Code

- 1 Measured activity
- 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
- 4 Not present

- 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity