5G03/C Conditioned SGHWR Sludges

SITE	Winfrith		
SITE OWNER	Nuclear Decommissioning Authorit	у	
WASTE CUSTODIAN	Magnox Limited		
WASTE TYPE	LLW		
Is the waste subject to Scottish Policy:	No		
WASTE VOLUMES		Conditioned	Packaged
Stocks:	At 1.4.2022	580.8 m ³	1887.6m ³
Total future arisings:		0 m³	0 m ³
Total waste volume:		580.8 m³	1887.6m³
Comment on volumes:	All the sludge from 5G03 has been stock and encapsulated, the volum external volume (968 x 0.6) and so	e quoted is the proc	duct of the number of drums and the
Uncertainty factors on volumes:	Stock (upper): x 1.05 Stock (lower): x 0.95		ngs (upper) x ngs (lower) x
WASTE SOURCE	The waste was derived from the en in 500L drums. The original sludge media, corrosion products and dec	was derived from s	

PHYSICAL CHARACTERISTICS

General description:	Solid waste made up of cement grout and wastes from various ion exchange processes. The conditioning matrix is 9:1 BFS:OPC. The capping matrix is 3:1 PFA:OPC.
Physical components (%wt):	100% solids
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	~1.72
Comment on density:	The wasteform density including drums. derived from WCH mass and volume

CHEMICAL COMPOSITION

General description and components (%wt):	Metal (12%), encapsulated waste (88%) - 38% Dried solids: including Ion exchange materials (Powdex - 29%, Metasil A - 2%, Solkafloc BW40 - 1%). The balance is cement encapsulant (50%)
Chemical state:	Alkali
Chemical form of radionuclides:	U: U-235 present in the sludge, its chemical form is not known.
Metals and alloys (%wt):	-

	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel	9.8	Metal drum, solid.	
Other ferrous metals	1.9	Drum Paddle	
Iron	~0.21	Grouted sludge, solid	
Aluminium	TR	Grouted sludge, solid	
Beryllium	0		
Cobalt			
Copper	~0.03	Grouted sludge, solid	
Lead	0		
Magnox/Magnesium	TR	Grouted sludge, solid	
Nickel	~0.01	Grouted sludge, solid	
Titanium	Р	Grout, solid	

5G03/C

/C Conditioned SGHWR Sludges

	Uranium	TR		
	Zinc	~0.01	Grouted sludge, solid	
	Zircaloy/Zirconium	0		
	Other metals			
Organics (%				
		(%wt)	Type(s) and comment	% of total C14 activity
	Total cellulosics	~0		activity
	Paper, cotton	0		
	Wood	0		
	Halogenated plastics	0		
	Total non-halogenated plastics	0		
	Condensation polymers	0		
	Others	0		
	Organic ion exchange materials	31.6	29.29% Powdex, 0.69% Solkafloc BW40, 1.59% Metasil A	
	Total rubber	0.01		
	Halogenated rubber	0		
	Non-halogenated rubber	0.01	Nitrile Rubber - drum seals	
	Hydrocarbons			
	Oil or grease			
	Fuel			
	Asphalt/Tarmac (cont.coal tar)			
	Asphalt/Tarmac (no coal tar)			
	Bitumen			
	Others			
	Other organics	TR	Silicon sealant under lid - Trace	
Other mater	ials (%wt): -			
		(%wt)	Type(s) and comment	% of total C14 activity
	Inorganic ion exchange materials			-
	Inorganic sludges and flocs	0		
	Soil	0		
	Brick/Stone/Rubble	0		
	Cementitious material	50.0	Grout. The conditioning matrix is 9:1 BFS:OPC. The capping matrix is 3:1 PFA:OPC.	
	Sand			
	Glass/Ceramics	0		
	Graphite	0		
	Desiccants/Catalysts	0		
	Asbestos	0		
	Non/low friable	U		
	Moderately friable			
	Highly friable			

2022 Inventory

5G03/C

Conditioned SGHWR Sludges

	Free aqueous liquids	0	
	Free non-aqueous liquids	0	
	Powder/Ash	3.6	Hydrated lime powder
Inorganic an	ions (%wt): -		
		(%wt)	Type(s) and comment
	Fluoride		
	Chloride		
	lodide	0	
	Cyanide	0	
	Carbonate	0	
	Nitrate		
	Nitrite		
	Phosphate	0	
	Sulphate		
	Sulphide	0	

Materials of interest for There are no hazardous materials in the waste, and, the waste contains no toxic metals. waste acceptance criteria:

			(%wt)	Type(s) and comment
	Combustible meta	als	0	
	Low flash point lic	quids	0	
	Explosive materia	als	0	
	Phosphorus		0	
	Hydrides		0	
	Biological etc. ma	aterials	0	
	Biodegradable m	aterials	0	
	Putrescible was	stes	0	
	Non-putrescible	e wastes		
	Corrosive materia	als	0	
	Pyrophoric mater	ials	0	
	Generating toxic	gases	0	
	Reacting with wat	ter	0	
	Higher activity pa	rticles		
	Soluble solids as compounds			
Hazardous s non hazardo	ubstances / us pollutants:	None expected		
			(%wt)	Type(s) and comment

Acrylamide..... Benzene..... Chlorinated solvents..... Formaldehyde..... Organometallics.....

2022 Inventory

5G03/C Conditioned SGHWR Sludges

Phenol		
Styrene		
Tri-butyl phosphate		
Other organophosphates		
Vinyl chloride		
Arsenic		
Barium		
Boron	TR	Grouted sludge, solid
Boron (in Boral)		
Boron (non-Boral)		
Cadmium		
Caesium		
Selenium		
Chromium	TR	Grouted sludge, solid
Molybdenum		
Thallium		
Tin		
Vanadium	~0.01	Grouted sludge, solid
Mercury compounds		
Others		
Electronic Electrical Equipment (EEE)		
EEE Type 1		
EEE Type 2		
ЕЕЕ Туре 3		
EEE Type 4		
EEE Type 5		
Complexing agents (%wt): Yes		
	(%wt)	Type(s) and comment
EDTA	、 ,	
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants	<0.10	Acetate, formate, Citrate, oxalate & picolinate may be present but are believed to be <0.1% of wet weight.
Total complexing agents	<0.10	-
Potential for the waste to Yes. Grouted drums contain discrete items:	s are cons	idered to be DIs

TREATMENT, PACKAGING AND DISPOSAL

5G03/C Conditioned SGHWR Sludges

Planned on-site / off-site On-site / Stream volume Treatment treatment(s): Off site % Low force compaction Supercompaction (HFC) Incineration Solidification Decontamination Metal treatment Size reduction Decay storage Recyling / reuse Other / various 100.0 None Comment on planned Waste has already been encapsulated ready for disposal. treatments: Stream Disposal **Disposal Routes:**

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known	100.0	1.7

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

_

Disposal Route	Stream volume %			
	2022/23 2023/24		2024/25	
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known				

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	-	-	-	-	-

-

Waste Packaging for Disposal:

5G03/C Conditioned SGHWR Sludges

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other	100.0	6	97

Other information:

There will be 10 drums placed in 1 cabriolet and 10 cabriolets in 1 rail shipment, so 100 drums at one time despatching to LLWR. 11 shipments in total, with the last shipment only having 68 drums instead of 100.

Waste Planned for Disposal at the LLW Repository:

Container voidage:	Voidage will be minimal: limited to ullage within the 500 litre drum
Waste Characterisation Form (WCH):	The waste meets the LLWR's Waste Acceptance Criteria (WAC). The waste has a current WCH. Inventory information is consistent with the current WCH.
Waste consigned for disposal to LLWR in year of generation:	No. Disposal to LLWR is currently planned for 2022-2024.

Non-Containerised Waste for	In-Vault Grouting: (Not applicable to this waste stream)				
Stream volume (%):	-				
Waste stream variation:	-				
Bounding cuboidal volume:					
Inaccessible voidage:	-				
Other information:	-				
RADIOACTIVITY					
Source:	The activity originated from removal of contamination from the SGHWR primary circuit and fuel ponds.				
Uncertainty:	A representative sample of sludge was taken for each batch of drums prior to encapsulation in the WETP. The radiological consistency of each batch was demonstrated by measuring the Cs-137 to Co-60 ratio. The encapsulated sludge batches were grouped together according to the Cs-137 to Co-60 ratio producing a total of 6 bulked samples which were sent for analysis. The results of the analysis were used to deduce a fingerprint.				
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.				
Measurement of radioactivities:	A total of six samples were analysed. All of the samples were analysed for gross alpha and gross beta activity; gamma spectrometry; tritium; carbon-14; nickel-63; strontium-90; and uranium, thorium and plutonium separation followed by alpha spectrometry.Rad data taken from WCH submission: 1MXN-1WIN-0-WCH-0-4320 V16 and decayed by two years to 2022.				
Other information:	-				

Conditioned SGHWR Sludges 5G03/C

	Ν	lean radioact	ivity. TBa/m³		Mean radioactivity, TBq/m ³			
	Waste at	Bands and	Future Bands and			Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings Code	Nuclide	1.4.2022	Code	arisings	Code
Н 3	1.43E-04	CC 1		Gd 153		8		
Be 10		8		Ho 163		8		
C 14	1.46E-04	CC 1		Ho 166m		8		
Na 22		8		Tm 170		8		
AI 26		8		Tm 171		8		
Cl 36 Ar 39		8		Lu 174		8		
Ar 42		8 8		Lu 176 Hf 178n		8 8		
K 40		о 8		Hf 182		о 8		
Ca 41		8		Pt 193		8		
Mn 53		8		TI 204		8		
Mn 54		8		Pb 205		8		
Fe 55	3.32E-05	CC 1		Pb 210		8		
Co 60	7.07E-04	CC 2		Bi 208		8		
Ni 59		8		Bi 210m		8		
Ni 63	2.66E-03	CC 1		Po 210		8		
Zn 65		8		Ra 223		8		
Se 79		8		Ra 225		8		
Kr 81		8		Ra 226		8		
Kr 85		8		Ra 228		8		
Rb 87		8		Ac 227		8		
Sr 90	2.08E-04	CC 1		Th 227		8		
Zr 93		8		Th 228		8		
Nb 91		8		Th 229		8		
Nb 92		8		Th 230		8		
Nb 93m Nb 94		8 8		Th 232 Th 234	4.83E-09	8 CC 2		
Mo 93		8		Pa 231	4.032-09	8		
Tc 97		8		Pa 233		8		
Tc 99		8		U 232		8		
Ru 106		8		U 233		8		
Pd 107		8		U 234	2.59E-08	CC 1		
Ag 108m		8		U 235		8		
Ag 110m		8		U 236		8		
Cd 109		8		U 238	4.83E-09	CC 1		
Cd 113m		8		Np 237		8		
Sn 119m		8		Pu 236		8		
Sn 121m		8		Pu 238	8.04E-07	CC 1		
Sn 123		8		Pu 239	1.05E-06	CC 1		
Sn 126		8		Pu 240	8.55E-07	CC 1		
Sb 125		8		Pu 241	8.44E-06	CC 2		
Sb 126 Te 125m		8		Pu 242 Am 241	7.24E-09 2.6E-06	CC 1 CC 2		
Te 125m Te 127m		8 8		Am 241 Am 242m	2.0E-00	8		
I 129	2.32E-08	CC 2		Am 24211 Am 243		8		
Cs 134	3.72E-08	CC 2		Cm 242		8		
Cs 135	0.722 00	8		Cm 242 Cm 243	1.50E-08	CC 2		
Cs 137	7.21E-03	CC 2		Cm 244	8.94E-07	CC 2		
Ba 133		8		Cm 245	-	8		
La 137		8		Cm 246		8		
La 138		8		Cm 248		8		
Ce 144		8		Cf 249		8		
Pm 145		8		Cf 250		8		
Pm 147		8		Cf 251		8		
Sm 147		8		Cf 252		8		
Sm 151		8		Other a				
Eu 152		8		Other b/g		.	-	
Eu 154		8		Total a	6.26E-06	CC 1	0	
Eu 155		8		Total b/g	1.11E-02	CC 1	0	

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3

C a factor of 10 D a factor of 100

E a factor of 1000

Bands quantify uncertainty in Note: mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity