SITE Winfrith SITE OWNER **Nuclear Decommissioning Authority WASTE CUSTODIAN** Magnox Limited LLW; PFSD **WASTE TYPE** Is the waste subject to Nο Scottish Policy: **WASTE VOLUMES** Reported At 1.4.2022..... Stocks: 2.5 m³ $0 \, \text{m}^3$ Total future arisings: $2.5 \, \text{m}^3$ Total waste volume: Comment on volumes: The volume has been calculated from the internal volume of the CLDs 0.63m3 x 4CLDs = 2.52m3 Uncertainty factors on Arisings (upper) Stock (upper): x 1.1 volumes: Stock (lower): x 0.9 Arisings (lower) **WASTE SOURCE** Historic Processing of wastes for sea disposal. Waste origins varied. PHYSICAL CHARACTERISTICS General description: Concrete-lined drums: 4off 1803 (0.63m3 each). Miscellaneous waste held in mild steel drums within a concrete carcass. Physical components (%wt): 100% Concrete lined drums: 4off 1803 (0.63m3 each). Waste in containers within the core - 36" high by 22" dia Sealed sources: The waste does not contain sealed sources. Bulk density (t/m³): 1.56 Comment on density: Recorded masses divided by total volume. CHEMICAL COMPOSITION General description and Concrete (>80 vol%), metals, plastics, glass, rubber, cellulose, possibly graphite components (%wt): (proportions not known, but have been estimated). Chemical state: Chemical form of U: Predominantly as oxide. radionuclides: Pu: Predominantly as oxide. Metals and alloys (%wt): (%wt) Type(s) / Grade(s) with proportions % of total C14 activity Stainless steel..... Other ferrous metals..... ~~10.0 Mild steel present as outer drum, inner cans and reinforcement. Iron..... Aluminium..... Beryllium..... Cobalt..... Copper..... P Lead..... P Lead provides shielding in cores. Magnox/Magnesium...... 0 Nickel.....

Titanium......

	Zina	0		
	Zinc			
	Zircaloy/Zirconium			
0-	Other metals	NE		
Organics (%	wt): -			
		(%wt)	Type(s) and comment	% of total C14 activity
	Total cellulosics	~2.0		
	Paper, cotton	~2.0		
	Wood	NE		
	Halogenated plastics	~2.0	PVC	
	Total non-halogenated plastics	~2.0		
	Condensation polymers	NE		
	Others	~2.0		
	Organic ion exchange materials	0		
	Total rubber	~2.0		
	Halogenated rubber	~2.0	Neoprene	
	Non-halogenated rubber	NE		
	Hydrocarbons			
	Oil or grease			
	Fuel			
	Asphalt/Tarmac (cont.coal tar)			
	Asphalt/Tarmac (no coal tar)			
	Bitumen			
	Others			
	Other organics	NE		
Other materi	als (%wt): Graphite present in o	one drum	with the Be-clad fuel pins.	
				% of total C4.4
		(%wt)	Type(s) and comment	% of total C14 activity
	Inorganic ion exchange materials	0		
	Inorganic sludges and flocs	0		
	Soil	0		
	Brick/Stone/Rubble	0		
	Cementitious material	~80.0		
	Sand			
	Glass/Ceramics	~~2.0		
	Graphite	NE		
	Desiccants/Catalysts			
	Asbestos	0		
	Non/low friable			
	Moderately friable			
	Highly friable			
	Free aqueous liquids	0		
	Free non-aqueous liquids	NE		

	Powder/Ash	Р	
Inorganic an	ions (%wt): Chloride may be components of ce		ne package as eutectic powder. Other anions only present as
		(%wt)	Type(s) and comment
	Fluoride	0	
	Chloride	<0.01	
	lodide	0	
	Cyanide	0	
	Carbonate	Р	
	Nitrate	0	
	Nitrite	0	
	Phosphate	0	
	Sulphate	NE	
	Sulphide	0	
Materials of i waste accep	nterest for - tance criteria:		
		(%wt)	Type(s) and comment
	Combustible metals	0	
	Low flash point liquids	0	
	Explosive materials	0	
	Phosphorus	0	
	Hydrides	0	
	Biological etc. materials	0	
	Biodegradable materials	0	
	Putrescible wastes	0	
	Non-putrescible wastes		
	Corrosive materials	0	
	Pyrophoric materials	0	
	Generating toxic gases	0	
	Reacting with water	0	
	Higher activity particles		
	Soluble solids as bulk chemical compounds		
Hazardous s	ubstances / - us pollutants:		
non nazardu	ao polititarito.	(%wt)	Type(s) and comment
	Acrylamide	(7000)	. 75-2(0) and common
	Benzene		
	Chlorinated solvents		
	Formaldehyde		
	Organometallics		

Phenol.....

Styrene		
Tri-butyl phosphate		
Other organophosphates		
Vinyl chloride		
Arsenic		
Barium		
Boron	0	
Boron (in Boral)		
Boron (non-Boral)	•	
Cadmium		
Caesium		
Selenium		
Chromium		
Molybdenum		
Thallium		
Tin		
Vanadium		
Mercury compounds		
Others		
Electronic Electrical Equipment (EE	E)	
EEE Type 1		
EEE Type 2		
EEE Type 3		
EEE Type 4		
EEE Type 5		
Complexing agents (%wt): No		
	(%wt) T	ype(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		
Total complexing agents		
Potential for the waste to contain discrete items: No. In & of itself steel components		stream may include DIs (notably any stainless

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)		
Incineration		
Solidification		
Decontamination		
Metal treatment		
Size reduction		
Decay storage		
Recyling / reuse		
Other / various		
None		100.0

Comment on planned treatments:

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known	100.0	1.6

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Noute	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
		_	_	_	

Waste Packaging for Disposal:

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other	100.0	10	< 1

Other information: -

Waste Planned for Disposal at the LLW Repository:

Container voidage:

Waste Characterisation

The waste meets the LLWR's Waste Acceptance Criteria (WAC).

Form (WCH): The waste does not have a current WCH.

Waste consigned for disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation:

Bounding cuboidal volume:

Inaccessible voidage: -

Other information:

RADIOACTIVITY

Source: Activated metals, fuel contamination. Some sources and clad fuel.

Uncertainty: -

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

Combination of historic declarations, facility fingerprints and recent gamma measurements.

Other information: -

	Mean radioactivity, TBq/m³			Mean radioactivity, TBq/m³				
Nuclide	Waste at 1.4.2022	Bands and Code	Future Bands and arisings Code	Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code
H 3		8		Gd 153		8		
Be 10		8		Ho 163		8		
C 14		8		Ho 166m		8		
Na 22		8		Tm 170		8		
Al 26		8		Tm 171		8		
CI 36		8		Lu 174		8		
Ar 39		8		Lu 176		8		
Ar 42		8		Hf 178n		8		
K 40		8		Hf 182		8		
Ca 41		8		Pt 193		8		
Mn 53		8		TI 204		8		
Mn 54		8		Pb 205		8		
Fe 55		8		Pb 210		8		
Co 60	4.30E-09	CC 2		Bi 208		8		
Ni 59		8		Bi 210m		8		
Ni 63		8		Po 210		8		
Zn 65		8		Ra 223		8		
Se 79		8		Ra 225		8		
Kr 81		8		Ra 226		8		
Kr 85		8		Ra 228		8		
Rb 87		8		Ac 227		8		
Sr 90	8.43E-08	CC 2		Th 227		8		
Zr 93		8		Th 228		8		
Nb 91		8		Th 229		8		
Nb 92		8		Th 230		8		
Nb 93m		8		Th 232		8		
Nb 94		8		Th 234	1.7E-05	CC 2		
Mo 93		8		Pa 231		8		
Tc 97		8		Pa 233		8		
Tc 99		8		U 232		8		
Ru 106		8		U 233		8		
Pd 107		8		U 234	3.4E-05	CC 2		
Ag 108m		8		U 235	8.35E-06	CC 2		
Ag 110m		8		U 236	0.002 00	8		
Cd 109		8		U 238	1.7E-05	CC 2		
Cd 113m		8		Np 237	00	8		
Sn 119m		8		Pu 236		8		
Sn 121m		8		Pu 238	9.35E-05	CC 2		
Sn 123		8		Pu 239	4.49E-04	CC 2		
Sn 126		8		Pu 240	3.54E-04	CC 2		
Sb 125		8		Pu 241	1.68E-03	CC 2		
Sb 126		8		Pu 242	1.36E-07	CC 2		
Te 125m		8		Am 241	3.66E-04	CC 2		
Te 127m		8		Am 242m		8		
I 129		8		Am 243		8		
Cs 134		8		Cm 242		8		
Cs 135		8		Cm 243		8		
Cs 137	4.98E-07	CC 2		Cm 244		8		
Ba 133	552 07	8		Cm 245		8		
La 137		8		Cm 246		8		
La 137		8		Cm 248		8		
Ce 144		8		Cff 249		8		
Pm 145		8		Cf 250		8		
Pm 147		8		Cf 250		8		
Sm 147		8		Cf 251		8		
Sm 151		8		Other a		U		
Eu 152		8		Other b/g				
Eu 152		8		Total a	1.32E-03	CC 2	0	
Eu 155		8		Total b/g	1.70E-03	CC 2	0	
Lu 133	<u> </u>	o		i otai b/g	1.70E-03	00 2	<u>! </u>	

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

- 1 Measured activity
 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity
- 8 Not expected to be present in significant quantity