SITE	Winfrith	
SITE OWNER	Nuclear Decommissioning Authority	
WASTE CUSTODIAN	Magnox Limited	
WASTE TYPE	LLW	
Is the waste subject to Scottish Policy:	No	
WASTE VOLUMES	Repo	rted
Stocks:	At 1.4.2022	0 m³
Future arisings -	1.4.2022 - 31.3.2027 58	5.5 m³
Total future arisings:	58	5.5 m³
Total waste volume:	58	5.5 m³
Comment on volumes:	Decommissioning and deplanting of buildir structures. Volume updated for 2016 RWI	
Uncertainty factors on volumes:	Stock (upper): x Stock (lower): x	Arisings (upper) x 1.5 Arisings (lower) x 0.5
WASTE SOURCE	The waste consists of all arisings from the	Dragon reactor decommissioning.

PHYSICAL CHARACTERISTICS

General description:	The waste is primarily formed of metallics wastes, concrete, grout and soft wastes such as PPE.
Physical components (%wt):	Concrete and brick from building structures 70%, Pressure vessel, Main Shield Plug and Associated metalwork 23%, mixed waste including waste in IP2 drums, plastic from various fittings 7%.
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	~2.44
Comment on density:	Waste stream mass divided by volume taken from draft WCH

CHEMICAL COMPOSITION

General description and components (%wt):	Concrete and brick ~70%, metalwork ~23%, mixed waste 7%
Chemical state:	Neutral
Chemical form of radionuclides:	 H-3: Radionuclides are present as trace elements in the activated materials. Present through contamination. C-14: Radionuclides are present as trace elements in the activated materials. Present through contamination. Cl-36: Radionuclides are present as trace elements in the activated materials. Se-79: Radionuclides are present as trace elements in the activated materials. Tc-99: Radionuclides are present as trace elements in the activated materials. I-129: Radionuclides are present as trace elements in the activated materials. Ra: Radionuclides are present as trace elements in the activated materials. Ra: Radionuclides are present as trace elements in the activated materials. Ra: Radionuclides are present as trace elements in the activated materials. Possible presence through contamination. Th: Radionuclides are present as trace elements in the activated materials. Possible presence through contamination. U: Radionuclides are present as trace elements in the activated materials. Present through contamination. Np: Radionuclides are present as trace elements in the activated materials. Present through contamination. Np: Radionuclides are present as trace elements in the activated materials. Present through contamination. Np: Radionuclides are present as trace elements in the activated materials. Present through contamination. Pu: Radionuclides are present as trace elements in the activated materials. Present through contamination.
Metals and alloys (%wt):	Plate thicknesses are 1" for the thermal shield plates, ~2" for the pressure vessel. Other material will be present from non-core items. It should be noted that the material will be sized reduced to allow it to be packed into the containers.

	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel	~0.14	Items from Dragon facility	
Other ferrous metals	17.5	Variety of items from Dragon facility	
Iron			
Aluminium			
Beryllium	0		
Cobalt			
Copper	~0.01	Copper items from Dragon facility	
Lead	~0.07	Solid (chevrons etc.) / lead shot	
Magnox/Magnesium	~0.05	Magnesium Oxide (within pyro cable)	
Nickel			
Titanium			
Uranium			
Zinc			
Zircaloy/Zirconium	0		
Other metals	5.3	Undefined from WCH data	
Organics (%wt): -			
	(%wt)	Type(s) and comment	% of total C14
Total cellulosics	1.0		activity
Paper, cotton	0		
Wood	1.0		
Halogenated plastics	~0.01	Solid - PPE, PVC etc.	
Total non-halogenated plastics	~0.46	Solid - PPE, Containers etc.	
Condensation polymers	~0.23		
Others	~0.23		
Organic ion exchange materials	0		
Total rubber	1.0		
Halogenated rubber	0.50		
Non-halogenated rubber	0.50		
Hydrocarbons	~0.01		
Oil or grease	~0.01		
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Othoro			
Others			
Other organics			

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	0		
Inorganic sludges and flocs	0		
Soil	0		
Brick/Stone/Rubble	70.0		
Cementitious material	Р		
Sand			
Glass/Ceramics	~0.08	Man Made Mineral Fibres mainly within cement	
Graphite	Р		
Desiccants/Catalysts			
Asbestos	~0.13		
Non/low friable			
Moderately friable			
Highly friable	~0.13	Chrysotile and Amosite	
Free aqueous liquids	0		
Free non-aqueous liquids	0		
Powder/Ash	Ρ		

Inorganic anions (%wt):

~0.02% is thermal insulation (Newtherm), a, calcium silicate

	(%wt)	Type(s) and comment
Fluoride	0	
Chloride	0	
lodide	0	
Cyanide	0	
Carbonate	0	
Nitrate	0	
Nitrite	0	
Phosphate	0	
Sulphate	0	
Sulphide	0	

Materials of interest for ~1.8 m3 asbestos in IP2 containers was identified in the SMART review. waste acceptance criteria:

	(70001)
Combustible metals	0
Low flash point liquids	0
Explosive materials	0
Phosphorus	0
Hydrides	0
Biological etc. materials	0
Biodegradable materials	1.0
Putrescible wastes	0
Non-putrescible wastes	1.0
2022 In	vontory

(%wt) Type(s) and comment

Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	0
Higher activity particles	
Soluble solids as bulk chemical compounds	

Hazardous substances / non hazardous pollutants:

Some lead will be present. Powders are likely to result from cutting during removal and size reduction. Asbestos present.

	(%wt)	Type(s) and comment
Acrylamide		
Benzene		
Chlorinated solvents		
Formaldehyde		
Organometallics		
Phenol		
Styrene		
Tri-butyl phosphate		
Other organophosphates		
Vinyl chloride		
Arsenic		
Barium		
Boron	0	
Boron (in Boral)		
Boron (non-Boral)		
Cadmium		
Caesium		
Selenium		
Chromium	0.01	Alloy within steel
Molybdenum		
Thallium		
Tin		
Vanadium		
Mercury compounds		
Others	1.0	plasterboard
Electronic Electrical Equipment (EEE)		
EEE Type 1	Р	250 off Stripped down circuit boards
EEE Type 2		
ЕЕЕ Туре 3	Р	150 items
EEE Type 4		
ЕЕЕ Туре 5	Р	10 off Rechargeable batteries

Complexing agents (%wt): No

	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		
Total complexing agents	0	

Potential for the waste to contain discrete items: Not yet determined. In & of itself not a DI; waste stream may include DIs (notably any stainless steel components)Large Concrete Items (LCIs) may be DIs; drummed (ungrouted)/"rubbleised" wastes assumed not DIs

TREATMENT, PACKAGING AND DISPOSAL

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)		
Incineration	Off-site	0.01
Solidification		
Decontamination		
Metal treatment		
Size reduction		
Decay storage		
Recyling / reuse		
Other / various		
None		100.0

Comment on planned treatments:

Planned on-site / off-site

treatment(s):

Disposal Routes:

97.75% of the stream is expected to be disposed of as VLLW to landfill.

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository	2.2	2.4
Expected to be consigned to a Landfill Facility	97.8	2.4
Expected to be consigned to an On-Site Disposal Facility		
Expected to be consigned to an Incineration Facility	0.01	0.40
Expected to be consigned to a Metal Treatment Facility		
Expected to be consigned as Out of Scope		
Expected to be recycled / reused		
Disposal route not known		

Classification codes for waste expected to be consigned to a landfill facility:

17 04 07, 17 05 03*/04

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

-

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	-	-	-	-	-

Waste Packaging for Disposal:

Container	Stream volume	Waste loading	Number of	
	%	m ³	packages	
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other	2.2	~10	2	

Other information:

Stream volume and disposal routing information has been updated in line with new draft WCH currently under assessment. Physical composition and fingerprint remain aligned with current approved/extended version of the WCH (1MXN-2WIN-0-WCH-0-4353 V1).

Waste Planned for Disposal at the LLW Repository:

-

_

Con			

Waste Characterisation Form (WCH):	The waste meets the LLWR's Waste Acceptance Criteria (WAC). The waste has a current WCH. Differences exist between Inventory information and current WCH.
Waste consigned for	Yes.

disposal to LLWR in	
year of generation:	

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):	-
Waste stream variation:	-
Bounding cuboidal volume:	
Inaccessible voidage:	-

Other information:

RADIOACTIVITY

Source:	Neutron induced activity of structural components. Fuel/ fission product contamination not yet assessed, but believed to be negligible in core components. Contamination levels in non-core plant are significant and will be quantified in the future.
Uncertainty:	The radionuclide inventory has been derived from activation modelling of the core LLW components only. Therefore the radionuclides present are those theoretically predicted to arise by the model from neutron activation. The data therefore requires caution in two respects: (i) it will generally (except in the case of fission product contamination e.g. Cs137) be a very conservative upper limit. (ii) the radionuclides are theoretically predicted to arise from activation of trace elements in reactor components but may not actually be present. The strategy to address these issues is further sampling and analysis to produce fingerprints as the decommissioning work proceeds.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	A reactor activation study was carried out based on a 3-D Monte Carlo neutron transport code to determine energy dependent neutron flux spectra, and on the EASY/FISPACT neutron activation code. This addresses core components only (see above comments).

WASTE STREAM	5G303	DRAGON Reactor Decommissioning LLW

-

The majority of wastes will actually be contaminated components. Activity data based on WCH: 1MXN-2WIN-0-WCH-0-4353 V1 and decayed by five years.

Other information:

	Mean radioactivity, TBq/m ³			Mean radioactivity, TBq/m ³				
Nuclide	Waste at	Bands and	Future	Bands and	Nuclide	Waste at Bands and	Future	Bands and
	1.4.2022	Code	arisings	Code		1.4.2022 Code	arisings	Code
H 3			5.88E-05	CC 2	Gd 153			8
Be 10				8	Ho 163			8
C 14			1.22E-06	CC 2	Ho 166m Tm 170			8
Na 22				8				8
AI 26			4.075.00	8	Tm 171			8
CI 36			1.37E-08	CC 2	Lu 174			8
Ar 39				8	Lu 176			8
Ar 42				8	Hf 178n Hf 182			8
K 40			2.27E 07	8 CC 2	Pt 193			8
Ca 41			3.37E-07		TI 204			8 8
Mn 53				8	Pb 205			8
Mn 54			0 77E 07	8	Pb 203 Pb 210			8
Fe 55			3.77E-07	CC 2	Bi 208			8
Co 60			4.63E-06	CC 2	Bi 200 Bi 210m			8
Ni 59			2.42E-07	CC 2	Po 210			8
Ni 63			1.63E-05	CC 2	Ra 223			8
Zn 65				8	Ra 225			8
Se 79				8	Ra 225 Ra 226			8
Kr 81				8	Ra 220 Ra 228			8
Kr 85				8	Ac 227			8
Rb 87				8	Th 227			8
Sr 90			2.68E-06	CC 2	Th 228			8
Zr 93				8	Th 229			8
Nb 91				8	Th 230			8
Nb 92				8	Th 232			8
Nb 93m				8	Th 234		1.73E-08	CC 2
Nb 94				8	Pa 231		1.752-00	8
Mo 93				8	Pa 233			8
Tc 97				8	F a 233 U 232			8
Tc 99				8	U 233			8
Ru 106				8	U 234		1.41E-08	CC 2
Pd 107				8	U 235		2.28E-09	CC 2
Ag 108m				8	U 236		2.202-03	8
Ag 110m Cd 109				8	U 238		1.73E-08	CC 2
				8	Np 237		1.752-00	8
Cd 113m Sn 119m				8 8	Pu 236			8
Sn 121m				о 8	Pu 238		1.49E-08	CC 2
Sn 12111 Sn 123				о 8	Pu 239		1.22E-09	CC 2
Sn 125 Sn 126				о 8	Pu 240		1.22E-09	CC 2
Sh 125				о 8	Pu 241		6.5E-08	CC 2
Sb 125 Sb 126				8	Pu 242		0.52-00	8
Te 125m				8	Am 241		2.99E-08	CC 2
Te 125m Te 127m				8	Am 241 Am 242m		2.992-00	8
I 129				8	Am 24211 Am 243			8
Cs 134				8	Cm 242			8
Cs 134 Cs 135				8	Cm 242 Cm 243		1.16E-09	CC 2
Cs 135 Cs 137			9.63E-06	CC 2	Cm 243 Cm 244		1.07E-09	CC 2
Ba 133			0.00∟-00	8	Cm 244 Cm 245		1.07	8
La 137				о 8	Cm 245 Cm 246			8
La 137				8	Cm 248 Cm 248			8
Ce 144				о 8	Cfi 248 Cf 249			8
Pm 145				о 8	Cf 249 Cf 250			8
Pm 145 Pm 147				о 8	Cf 250 Cf 251			8 8
Sm 147				8 8	Cf 251 Cf 252			8 8
Sm 147 Sm 151				о 8	Other a			0
Sm 151 Eu 152			3615 06		Other a Other b/g			
Eu 152 Eu 154			3.61E-06 1.42E-07	CC 2 CC 2	Total a	•	0 225 00	<u> </u>
			1.42E-07			0	8.32E-08	CC 2
Eu 155				8	Total b/g	0	9.81E-05	CC 2

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3

C a factor of 10 D a factor of 100 E a factor of 1000

Bands quantify uncertainty in Note: mean radioactivity.

Code

1 Measured activity

Measured activity
 Derived activity (best estimate)
 Derived activity (upper limit)
 Not present
 Present but not significant
 Likely to be present but not assessed
 Present in significant quantities but not determined
 Not expected to be present in significant quantity