WASTE STREAM	5H10 JET LA-LLW			
SITE	Culham			
SITE OWNER	United Kingdom Atomic Energy Authority			
WASTE CUSTODIAN	United Kingdom Atomic Energy Authority			
WASTE TYPE	LLW			
Is the waste subject to Scottish Policy:	Νο			
WASTE VOLUMES	Reported			
Stocks:	At 1.4.2022 ~102.6m ³			
Future arisings -	1.4.2022 - 31.3.2024 ~~75.0 m ³			
Total future arisings:	75.0 m ³			
Total waste volume:	177.6 m ³			
Comment on volumes:	As this is an operational waste stream the arisings will not be constant and will depend o the JET experimental programme, maintenance activities and breakdowns. It is assumed that the JET Experimental Programme is completed at the end of 2023. As this is an operational stream volumes and arising dates will be determined by the experimental programme for JET.			
Uncertainty factors on	Stock (upper): x 2.0 Arisings (upper) x 2.0			
volumes:	Stock (lower): x 0.5 Arisings (lower) x 0.5			
WASTE SOURCE	Ex torus items and other hard materials generated from engineering operations. Tritium contaminated and potentially neutron activated waste.			

PHYSICAL CHARACTERISTICS

General description:	Mostly metals such as inconel, steel, copper and aluminium. Includes small and volume reduced items packaged in to 200 litre steel drums and large items not suitable for volume reduction. Waste is segregated, sorted, sampled and size reduced where possible to enable packaging into disposal packages and to confirm disposal route. Beryllium contamination may be tied down to protect waste operators.
Physical components (%wt):	Metals (~84%), other materials (~16%)
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	~0.78
Comment on density:	Individual packages vary, figure used is based on historical Net wt averages of all packages generated as part of the waste stream between 01/01/2008 to 01/04/2016.

CHEMICAL COMPOSITION

General desc components	cription and (%wt):	Metals consisting of stainless, mild and galvanised steel, inconel, copper and aluminium (84%), other materials consisting of graphite, CFC, glass, rubble and concrete (16%).			and aluminium crete (16%).
Chemical state: Neutral					
Chemical form of radionuclides:H-3: Mainly outgassed tritium present in the form of tritiated water vapour, an absorbed into material surfaces.			, and some		
Metals and a	lloys (%wt):	Majority of metal pres <1% metal present as will be greater than 1	sent as siz s sheet an mx1m.	e reduced items to enable packaging in 20 d <5% bulk items. Dimensions of bulk iten	00l Steel Drums. ns will vary but
			(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
	Stainless steel		~22.0	316 ~75%, other grades ~25%.	2
	Other ferrous me	tals	~24.0		
	Iron		~1.0		
	Aluminium		~11.0		
	Beryllium		<<0.10		
	Cobalt		TR	As part of specialist alloys.	

WASTES	STREAM 5H10 JET LA	-LLW		
	Copper	~8.0		
	Lead	<0.10		
	Magnox/Magnesium	TR	As part of specialist alloys.	
	Nickel	~6.0	Inconel 90%, pure nickel and other specialist alloys 10%.	
	Titanium	<<1.0		
	Uranium	0		
	Zinc	~11.0		
	Zircaloy/Zirconium	TR	Not expected but may be present as part of specialist alloys.	
	Other metals	<0.10	Small quantities of silver and other metals may be present.	
Organics (%	%wt): Possible that a very	small qua	ntity (by weight) of PVC could be present.	
		(%wt)	Type(s) and comment	% of total C14
	Total cellulosics	TR		activity
	Paper, cotton	TR		
	Wood	TR		
	Halogenated plastics	TR		
	Total non-halogenated plastics	TR		
	Condensation polymers	TR		
	Others	TR		
	Organic ion exchange materials	TR		
	Total rubber	TR		
	Halogenated rubber	TR		
	Non-halogenated rubber	TR		
	Hydrocarbons	TR		
	Oil or grease	TR		
	Fuel	TR		
	Asphalt/Tarmac (cont.coal tar)	TR		
	Asphalt/Tarmac (no coal tar)	TR		
	Bitumen	TR		
	Others	TR		
	Other organics	TR		
Other mate	rials (%wt):			
		(%wt)	Type(s) and comment	% of total C14 activitv
	Inorganic ion exchange materials	<0.50		. ,
	Inorganic sludges and flocs	~1.0		
	Soil	0		
	Brick/Stone/Rubble	<0.20		
	Cementitious material	~0.50		
	Sand	~1.0		
	Glass/Ceramics	<1.0		
	Graphite	~10.0	Includes 3% Graphite and 7%	

WASTE STREAM 5H10 JET LA-LLW

Desiccants/Catalysts	TR
Asbestos	<1.5
Non/low friable	<1.0
Moderately friable	<0.50
Highly friable	TR
Free aqueous liquids	0
Free non-aqueous liquids	0
Powder/Ash	0

Carbon Fibre Composite.

Inorganic anions (%wt): Low levels of inorganic anions may be included in this stream as individual waste packages.

	(%wt)	Type(s) and comment
Fluoride	<<1.0	
Chloride	<<1.0	
lodide	0	
Cyanide	0	
Carbonate	0	
Nitrate	0	
Nitrite	0	
Phosphate	0	
Sulphate	<<1.0	
Sulphide	0	

Materials of interest for Beryllium dust contamination is present much less than 0.1% by mass. waste acceptance criteria:

	(%wt)	Type(s) and comment
Combustible metals	0	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	0	
Hydrides	TR	Potentially present in trace amounts as nickel metal hydride batteries.
Biological etc. materials	0	
Biodegradable materials	0	
Putrescible wastes	0	
Non-putrescible wastes	0	
Corrosive materials	<<1.0	Potentially present in trace amounts as acid/alkaline batteries.
Pyrophoric materials	0	
Generating toxic gases	0	
Reacting with water	0	
Higher activity particles	0	
Soluble solids as bulk chemical compounds	0	

WASTE STREAM 5H10 JET LA-LLW

Hazardous substances / non hazardous pollutants:

Beryllium dust is typically present at < 0.1% by weight.

Type(s) and comment

	(%wt)
Acrylamide	0
Benzene	0
Chlorinated solvents	0
Formaldehyde	0
Organometallics	0
Phenol	0
Styrene	0
Tri-butyl phosphate	0
Other organophosphates	0
Vinyl chloride	0
Arsenic	TR
Barium	0
Boron	TR
Boron (in Boral)	0
Boron (non-Boral)	TR
Cadmium	TR
Caesium	0
Selenium	0
Chromium	~~2.0
Molybdenum	<1.0
Thallium	0
Tin	TR
Vanadium	TR
Mercury compounds	TR
Others	TR
Electronic Electrical Equipment (EEE)
EEE Type 1	~1.0
EEE Type 2	~1.0
EEE Type 3	~1.0
EEE Type 4	TR
EEE Type 5	TR
Complexing agents (%wt): Yes	
	(%wt)
EDTA	0
DPTA	0
NTA	0
Polycarboxylic acids	TR

Potentially present in trace amounts as arsenides in specialist semiconductors / electronics. Included as boronated concrete. Potentially present in trace amounts in specialist semiconductors / electronics / solders.

Included in specialist steels.

Included in specialist steels.

Included in solders.

Included in specialist steels.

Type(s) and comment

WASTE STREAM 5H10 JET LA-LLW

Other organic complexants..... TR

Trace quantities of complexing agents may be present from cleaning solutions.

Total complexing agents..... TR

Yes. Yes waste stream could contain small quantities of discrete items

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Potential for the waste to

contain discrete items:

Off site	%
Low force compaction	
Supercompaction (HFC)	
Incineration	
Solidification	
Decontamination	
Metal treatment	
Size reduction	
Decay storage	
Recyling / reuse	
Other / various	
None	100.0

Comment on planned treatments:

Disposal Routes:

	volume %	density t/m3
Expected to be consigned to the LLW Repository		
Expected to be consigned to a Landfill Facility	100.0	~0.78
Expected to be consigned to an On-Site Disposal Facility		
Expected to be consigned to an Incineration Facility		
Expected to be consigned to a Metal Treatment Facility		
Expected to be consigned as Out of Scope		
Expected to be recycled / reused		
Disposal route not known		

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

_

Disposal Route	Stream volume %			
	2022/23	2023/24	2024/25	
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known				

Opportunities for alternative disposal routing:

Baseline Opportunity Stream Date that Opportunity Opportunity Management Route Management Route Volume (%) Opportunity Confidence Comment	Baseline Opportunity Management Route Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
---	---	----------------------	---	---------------------------	---------

Waste Packaging for Disposal: (Not applicable to this waste stream)

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other			

Other information:

Not forecast for disposal to LLWR.

Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream)					
Container voidage:	-				
Waste Characterisation Form (WCH):	-				
Waste consigned for disposal to LLWR in year of generation:	-				
Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)					
Stream volume (%):	-				
Waste stream variation:	-				
Bounding cuboidal volume:					
Inaccessible voidage:	-				
Other information:	-				
RADIOACTIVITY					
Source:	The main sources of activity are tritium contamination and neutron activation. Loose activated carbon/beryllium dust contaminating material surfaces.				
Uncertainty:	Nuclide activities are only indicative and relate to operational waste already analysed by JET. In the future the activities may increase according to changes in the experimental programme and related, further exposure to activating neutrons.				
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.				
Measurement of radioactivities:	Nuclide activities are only indicative and are based on combustion followed by liquid scintillation counting and gamma spectroscopy. Future neutron activation and tritium contamination levels will be determined by the experimental programme.				
Other information:	-				

WASTE STREAM 5H10

JET	LA-L	LW
JLI	LA-L	

	Mean radioactivity. TBα/m ³			Mean radioactivity. TBg/m ³					
	Waste at	Bands and	Future	Bands and		Waste at	Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code
H 3	~1.01E-04	AB 3	~1.9E-04	AB 3	Gd 153				
Be 10					Ho 163				
C 14			~5E-08	CC 2	Ho 166m				
Na 22					Tm 170				
AI 26					Tm 171				
CI 36					Lu 174				
Ar 39					Lu 176				
Ar 42					Hf 178n				
K 40					Hf 182				
Ca 41					Pt 193				
Mn 53					TI 204				
Mn 54			~4E-08	CC 2	Pb 205				
Fe 55	~3E-06	CC 2	~1.4E-04	AB 3	Pb 210				
Co 60	~1E-06	CC 2	~1.4E-04	AB 3	BI 208				
Ni 59			~6E-07	CC 2					
NI 63	~3E-06	CC 2	~4E-05	CC 2	FU∠IU Ra 223				
20 00 So 70					Ra 225				
50 / 9 Kr 81					Ra 226				
Kr 85					Ra 228				
Rb 87					Ac 227				
Sr 90					Th 227				
Zr 93					Th 228				
Nb 91			~8E-07	CC 2	Th 229				
Nb 92					Th 230				
Nb 93m			~6E-05	CC 2	Th 232				
Nb 94			~2E-06	CC 2	Th 234				
Mo 93			~1E-07	CC 2	Pa 231				
Tc 97					Pa 233				
Tc 99					0 232				
Ru 106					0 233				
Pd 107					0 234				
Ag 108m					U 236				
					U 238				
Cd 109					Np 237				
Sn 119m					Pu 236				
Sn 121m					Pu 238				
Sn 123					Pu 239				
Sn 126					Pu 240				
Sb 125					Pu 241				
Sb 126					Pu 242				
Te 125m					Am 241				
Te 127m					Am 242m				
l 129					Am 243				
Cs 134					Cm 242				
Cs 135					Cm 243				
Cs 137					Cm 245				
Ba 133					Cm 246				
La 13/					Cm 248				
La 130					Cf 249				
Pm 145					Cf 250				
Pm 147					Cf 251				
Sm 147					Cf 252				
Sm 151					Other a				
Eu 152					Other b/g			~5E-08	CC 2
Eu 154					Total a	0		0	
Eu 155					Total b/g	~1.08E-04	AB 3	~5.74E-04	AB 3

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3

C a factor of 10

D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate) 3 Derived activity (upper limit)

a Derived activity (upper limit)
4 Not present
5 Present but not significant
6 Likely to be present but not assessed
7 Present in significant quantities but not determined
8 Not expected to be present in significant quantity