WASTE STREAM 5	H18 H3AT LLW		
SITE	Culham		
SITE OWNER	United Kingdom Atomic Energy	y Authority	
WASTE CUSTODIAN	United Kingdom Atomic Energy	y Authority	
WASTE TYPE	LLW		
ls the waste subject to Scottish Policy:	No		
WASTE VOLUMES		Reported	
Stocks:	At 1.4.2022	0 m ³	
Future arisings -	1.4.2023 - 31.3.2035	~~60.0 m ³	
Total future arisings:	1.4.2020 - 31.0.2000	60.0 m ³	
Total waste volume:		60.0 m ³	
Comment on volumes:	the experimental programme, in yet to be constructed and there	stream the arisings will not be constant a maintenance activities and breakdowns. T efore uncertainty in volumes of waste to b en used to estimate volumes, but, a more I experience has been gained.	This is a new facility e produced is high.
Uncertainty factors on volumes:	Stock (upper): x Stock (lower): x	Arisings (upper) x 5 Arisings (lower) x 0	-
WASTE SOURCE	H3AT tritium operations resulti	ng in tritium contamination of waste and p	plant.
PHYSICAL CHARACTERI	STICS		
General description:	reduced items packaged in to a reduction. Waste is seggregate	steel, copper and aluminium. Includes sr 200 litre steel drums and large items not s ed, sorted, sampled and size reduced who al packages and to confirm disposal route who to protect waste operators.	suitable for volume ere possible to
Physical components (%wt):	Metals (95%), other materials	(5%).	
Sealed sources:		rces. Sealed sources may be included in returned to manufacturer where possible	
Bulk density (t/m ³):	~0.55		
Comment on density:		e used is based on historical Net wt avera the waste stream between 01/01/2010 a	
CHEMICAL COMPOSITIO	Ν		
General description and components (%wt):		mild and galvanised steel, inconel, coppe ng of graphite, glass, rubble and concrete	
Chemical state:	Neutral		
Chemical form of radionuclides:	H-3: Mainly outgassed tritium p absorbed into material surface	present in the form of tritiated water vapou s.	ır, and some
Metals and alloys (%wt):		ze reduced items to enable packaging in 2 nd <5% bulk items. Dimensions of bulk ite	
	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel	~50.0	316 ~75% other grades ~25%	5

2022 Inventory

WASTE S	STREAM 5H18	H3AT LLW		
	Copper	~7.0		
	Lead	< <0.10		
	Magnox/Magnesium	TR	As part of specialist alloys.	
	Nickel	~3.0	Inconel 90%, pure nickel and other specialist alloys 10%.	
	Titanium	<<1.0		
	Uranium	0		
	Zinc	~2.0		
	Zircaloy/Zirconium	TR	Not expected but may be present as part of specialist alloys	
	Other metals	< <0.10	Small quantities of silver and other metals may be present.	
Organics (%	6wt): Possible t	hat a very small qua	antity (by weight) of PVC could be present.	
		(%wt)	Type(s) and comment	% of total C1
	Total cellulosics	TR		activity
	Paper, cotton	TR		
	Wood	TR		
	Halogenated plastics	TR		
	Total non-halogenated plas	tics TR		
	Condensation polymers	TR		
	Others	TR		
	Organic ion exchange mate	rials TR		
	Total rubber	TR		
	Halogenated rubber	TR		
	Non-halogenated rubber.	TR		
	Hydrocarbons	TR		
	Oil or grease	TR		
	Fuel	TR		
	Asphalt/Tarmac (cont.coa	l tar) TR		
	Asphalt/Tarmac (no coal t	ar) TR		
	Bitumen	TR		
	Others	TR		
	Other organics	TR		
Other mate	rials (%wt): -			
		(%wt)	Type(s) and comment	% of total C1 activity
	Inorganic ion exchange mat	erials 0		- /
	Inorganic sludges and flocs	~1.0		
	Soil	0		
	Brick/Stone/Rubble	< <0.20		
	Cementitious material	~1.0		
	Sand	~1.0		
	Glass/Ceramics	< <1.0		
	Graphite	~1.0		

2022 Inventory

WASTE STREAM 5H18 H3AT LLW

Desiccants/Catalysts	TR
Asbestos	TR
Non/low friable	TR
Moderately friable	TR
Highly friable	TR
Free aqueous liquids	0
Free non-aqueous liquids	0
Powder/Ash	0

May be present in individual packages at trace levels.

Inorganic anions (%wt):

Potential for trace amounts of inorganic anions

wt) Type(s) and comment

Materials of interest for waste acceptance criteria: Beryllium dust contamination is present. There may be some solid beryllium items included in this stream which account for the <0.3% by wt.

	(%
Combustible metals	0
Low flash point liquids	0
Explosive materials	0
Phosphorus	0
Hydrides	0
Biological etc. materials	0
Biodegradable materials	0
Putrescible wastes	0
Non-putrescible wastes	0
Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	0
Higher activity particles	0
Soluble solids as bulk chemical compounds	0

(%wt) Type(s) and comment

WASTE STREAM 5H18 H3AT LLW

Hazardous substances / non hazardous pollutants: Beryllium dust is typically present at < 0.1% by weight, solid beryllium may be present in individual packages above 0.1%.

	(%wt)	Type(s) and comment
Acrylamide	0	
Benzene	0	
Chlorinated solvents	0	
Formaldehyde	0	
Organometallics	0	
Phenol	0	
Styrene	0	
Tri-butyl phosphate	0	
Other organophosphates	0	
Vinyl chloride	0	
Arsenic	0	
Barium	0	
Boron	Р	Included as boronated
Boron (in Boral)	0	
Boron (non-Boral)	Р	
Cadmium	0	
Caesium	0	
Selenium	0	
Chromium	Р	Included in specialist st
Molybdenum	Р	Included in specialist st
Thallium	0	
Tin	Р	Included in solders.
Vanadium	Р	Included in specialist st
Mercury compounds	0	
Others	Р	
Electronic Electrical Equipment (EEE)		
EEE Type 1	TR	
EEE Type 2	<1.0	
ЕЕЕ Туре 3	<1.0	
ЕЕЕ Туре 4	0	
EEE Type 5	0	
Complexing agents (%wt): Yes		
	(%wt)	Type(s) and comment
EDTA	0	
DPTA	0	
NTA	0	
Polycarboxylic acids	TR	
Other organic complexants	TR	Trace quantities of com present from cleaning s
Total complexing agents	TR	

as boronated concrete. in specialist steels. in specialist steels. in solders. in specialist steels.

antities of complexing agents may be from cleaning solutions.

2022 Inventory

WASTE STREAM 5H18 H3AT LLW

Potential for the waste to contain discrete items:

Yes. Yes, discrete items may be included but not expected in large quantities.

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):	Treatment	On-site / Off site	Stream volume %
	Low force compaction		
	Supercompaction (HFC)	Off-site	~50.0
	Incineration		
	Solidification		
	Decontamination		
	Metal treatment	Off-site	~10.0
	Size reduction		
	Decay storage		
	Recyling / reuse		
	Other / various		
	None		~40.0

Comment on planned treatments:

Drummed waste will be supercompacted, bulk undrummed waste expected to be consigned in a third height ISO.

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository	~90.0	~~0.55
Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known	~10.0	~~0.55

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

_

Disposal Pouto	Stream volume %		
Disposal Route	2022/23	2023/24	2024/25
Expected to be consigned to the LLW Repository			
Expected to be consigned to a Landfill Facility			
Expected to be consigned to an On-Site Disposal Facility			
Expected to be consigned to an Incineration Facility			
Expected to be consigned to a Metal Treatment Facility			
Expected to be consigned as Out of Scope			
Expected to be recycled / reused			
Disposal route not known			

Opportunities for alternative disposal routing:

Baseline Opportunity Management Route Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
---	----------------------	---	---------------------------	---------

-

WASTE STREAM 5H18 H3AT LLW

Container	Stream volume	Waste loading	Number of
	%	m ³	packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other	90.0	<9.3	6

Other information:

Waste Planned for Disposal at the LLW Repository:

_

Container voidage:	<10%
Waste Characterisation Form (WCH):	The waste meets the LLWR's Waste Acceptance Criteria (WAC). The waste does not have a current WCH.
Waste consigned for disposal to LLWR in year of generation:	No. There will always be a quantity of waste collected towards the end of a year which is not processed for disposal until the following year. Quite likely that this type of waste will not be despatched for a year after generation.

Non-Containerised Waste for In-Vault Grouting:							
Stream volume (%):	-						
Waste stream variation:	-						
Bounding cuboidal volume:							
Inaccessible voidage:	-						
Other information:	-						
RADIOACTIVITY							
Source:	The main sources of activity are tritium contamination and neutron activation. Loose activated carbon/beryllium dust contaminating material surfaces.						
Uncertainty:	Nuclide activities are only indicative and relate to operational waste already analysed by JET. In the future the activities may increase according to changes in the experimental programme and related, further exposure to activating neutrons.						
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.						
Measurement of radioactivities:	Nuclide activities are only indicative and are based on combustion followed by liquid scintillation counting and gamma spectroscopy. Future neutron activation and tritium contamination levels will be determined by the experimental programme.						
Other information:	-						

WASTE STREAM 5H18

	Mean radioactivity, TBq/m ³				Mean radioactivity, TBq/m ³				
Nuclide	Waste at	Bands and	Future	Bands and	Nuclide	Waste at	Bands and	Future	Bands and
	1.4.2022	Code	arisings	Code		1.4.2022	Code	arisings	Code
H 3 Be 10			~1.8E-03	CC 2	Gd 153 Ho 163				
C 14				6	Ho 166m				
Na 22				0	Tm 170				
AI 26					Tm 171				
CI 36					Lu 174				
Ar 39					Lu 176				
Ar 42					Hf 178n				
K 40					Hf 182				
Ca 41					Pt 193				
Mn 53					TI 204				
Mn 54					Pb 205				
Fe 55					Pb 210				
Co 60					Bi 208				
Ni 59					Bi 210m				
Ni 63					Po 210				
Zn 65					Ra 223				
Se 79					Ra 225				
Kr 81					Ra 226				
Kr 85					Ra 228				
Rb 87					Ac 227				
Sr 90					Th 227				
Zr 93					Th 228				
Nb 91					Th 229				
Nb 92					Th 230				
Nb 93m					Th 232				
Nb 94					Th 234				
Mo 93					Pa 231				
Tc 97					Pa 233				
Tc 99					U 232 U 233				
Ru 106 Pd 107					U 234				
Ag 108m					U 235				
Ag 110m					U 236				
Cd 109					U 238				
Cd 113m					Np 237				
Sn 119m					Pu 236				
Sn 121m					Pu 238				
Sn 123					Pu 239				
Sn 126					Pu 240				
Sb 125					Pu 241				
Sb 126					Pu 242				
Te 125m					Am 241				
Te 127m					Am 242m				
l 129					Am 243				
Cs 134					Cm 242				
Cs 135					Cm 243				
Cs 137					Cm 244				
Ba 133					Cm 245				
La 137					Cm 246				
La 138					Cm 248				
Ce 144					Cf 249				
Pm 145					Cf 250				
Pm 147					Cf 251 Cf 252				
Sm 147 Sm 151					Other a				
Eu 152					Other a Other b/g				
Eu 152 Eu 154					Total a	0		0	
Eu 154 Eu 155					Total b/g	0		~1.8E-03	CC 2
24100					i otai bry	0		~1.02*03	00 2

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3

C a factor of 10 D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

Measured activity
2 Derived activity (best estimate)
3 Derived activity (upper limit)
4 Not present
5 Present but not significant
6 Likely to be present but not significant

6 Likely to be present but not assessed 7 Present in significant quantities but not determined 8 Not expected to be present in significant quantity