OITE	Culham				
SILE	Cuman				
SITE OWNER	United Kingdom	Atomic Energy Author	ority		
WASTE CUSTODIAN	United Kingdom	Atomic Energy Autho	ority		
WASTE TYPE	LLW				
Is the waste subject to Scottish Policy:	No				
WASTE VOLUMES			Reported		
Stocks:	At 1.4.2022		0 m ³		
Future arisings -	1.4.2024 - 31.3.2	027	137.0 m³		
Total future arisings:			137.0 m³		
Total waste volume:			137.0 m³		
Comment on volumes:	This waste is fror progress. These assumed that the Decommissioning completed at the	m decommissioning s have yet to be devel a JET Experimental F g on this basis starts end of 2033.	so the annu oped as the Programme in 2024. It i	al arisings will vary JET facilities are s is completed at the s planned that dec	with the plans and still operational. It is e end of 2023. ommissioning will be
Uncertainty factors on	Stock (upper):	x		Arisings (upper)	x 2.0
volumes:	Stock (lower):	x		Arisings (lower)	x 0.5
WASTE SOURCE	The waste arises	from JET decommis	ssioning act	vities.	

PHYSICAL CHARACTERISTICS

General description:	The waste comprises redundant equipment made from many materials including stainless steel, copper and inconel, associated with the JET experimental machine and surrounding plant. Equipment will be a mix of large and small items, i.e. poloidal field coils, transformer core. All large items will be size reduced in order to be accommodated within ISO waste containers. The proportion and form of the tritium in the components is not currently known. It is expected that waste will be processed on-site as per operational activated LLW by size reduction. Exact processing methods are to be determined.
Physical components (%wt):	Poloidal field coils (~11.6 %), transformer core (~72 %), internal mechanical structure (~4.5 %), external mechanical structure (~6.9%), secondary waste (~5%).
Sealed sources:	Not yet determined.
Bulk density (t/m ³):	~4
Comment on density:	Density range of materials in stream varies from 1.9 to 8.2 t/m ³ . The bulk density assumes 50% voidage.

CHEMICAL COMPOSITION

General description and components (%wt):	Iron (~67%), stainless steel (~8%), copper (~8%), GGG steel (~6%), secondary waste (~5%), Inconel (~5%), resin (~1%).
Chemical state:	Neutral
Chemical form of radionuclides:	H-3: Mainly outgassed tritium present in the form of tritiated water vapour, and some absorbed into material surfaces.
Metals and alloys (%wt):	Metallic content is in the form of equipment and plant items with thicknesses ranging from a few mm to metres. There might be some sheet material from ventilation ducting.

	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel	~8.0	316 ~75%, other grades ~25%.	
Other ferrous metals	~63.0	GGG Steel.	
Iron	~10.0		
Aluminium	Р		
Beryllium	<0.10		
Cobalt	TR	As part of specialist alloys.	

	Copper	~8.0		
	Lead	TR		
	Magnox/Magnesium	TR	As part of specialist alloys.	
	Nickel	~5.0	Inconel 600, Inconel 625.	
	Titanium	TR		
	Uranium	0		
	Zinc	P		
	Zircaloy/Zirconium	. TR	Not expected but may be present as part of specialist alloys.	
	Other metals	TR	Small quantities of silver and other metals may be present.	
Organics (%	wt): The organic materi resins and wood (r estimated. This str work. Total organic	als will incl oof panels eam will co s and othe	ude cable insulation and rubber hoses in the torus hall). The extent of organic intain secondary waste from the decom r materials ~~6% including secondary w	and insulation, epoxy materials is not missioning operationa waste arisings.
		(%wt)	Type(s) and comment	% of total C14
	Total cellulosics	Р		activity
	Paper, cotton	Р		
	Wood	Р		
	Halogenated plastics	Р		
	Total non-halogenated plastics	Р		
	Condensation polymers	Р		
	Others	Р		
	Organic ion exchange materials	Р		
	Total rubber	Р		
	Halogenated rubber	Р		
	Non-halogenated rubber	Р		
	Hydrocarbons	TR		
	Oil or grease	TR		
	Fuel	0		
	Asphalt/Tarmac (cont.coal tar)	0		
	Asphalt/Tarmac (no coal tar)	0		
	Bitumen	0		
	Others	0		
	Other organics	Р		
Other mater	ials (%wt): -			
		(%wt)	Type(s) and comment	% of total C14 activity
	Inorganic ion exchange materials	0		
	Inorganic sludges and flocs	Р		

0

Ρ

Ρ

Ρ

Ρ

Soil.....

Brick/Stone/Rubble.....

Cementitious material.....

Sand.....

Glass/Ceramics.....

Graphite	Ρ	
Desiccants/Catalysts	TR	
Asbestos	TR	May be present in individual packages at trace levels.
Non/low friable	TR	
Moderately friable	TR	
Highly friable	TR	
Free aqueous liquids	0	
Free non-aqueous liquids	0	
Powder/Ash	0	

Inorganic anions (%wt):

The inorganic anion content will be assessed more accurately in future although no significant quantities are expected.

Type(s) and comment

	(%wt)
Fluoride	~0
Chloride	~0
lodide	~0
Cyanide	0
Carbonate	~0
Nitrate	>0
Nitrite	~0
Phosphate	~0
Sulphate	~0
Sulphide	~0

Materials of interest for waste acceptance criteria:

Beryllium dust is typically present at < 0.1% by weight, solid beryllium may be present in individual packages above 0.1%. Low flash point liquids may be present in trace amounts from specific experiments.

	(%
Combustible metals	0
Low flash point liquids	Ρ
Explosive materials	0
Phosphorus	0
Hydrides	0
Biological etc. materials	0
Biodegradable materials	0
Putrescible wastes	Ρ
Non-putrescible wastes	0
Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	0
Higher activity particles	0
Soluble solids as bulk chemical compounds	0

6wt) Type(s) and comment

Hazardous substances / non hazardous pollutants:

The existence of toxic metals will be assessed in the future. The JET machine uses beryllium so it is likely that some of the waste contains beryllium. There might also be lead from the diagnostics if it becomes contaminated. Be/ Pb content will need to be assessed.

Type(s) and comment

	(%wt)
Acrylamide	0
Benzene	0
Chlorinated solvents	0
Formaldehyde	0
Organometallics	0
Phenol	0
Styrene	0
Tri-butyl phosphate	0
Other organophosphates	0
Vinyl chloride	0
Arsenic	Ρ
Barium	0
Boron	Р
Boron (in Boral)	0
Boron (non-Boral)	Р
Cadmium	Ρ
Caesium	0
Selenium	0
Chromium	Р
Molybdenum	Р
Thallium	0
Tin	Р
Vanadium	Ρ
Mercury compounds	0
Others	Р
Electronic Electrical Equipment (EEE)	
EEE Type 1	Р
EEE Type 2	Р
EEE Type 3	Р
EEE Type 4	0
EEE Type 5	Ρ
Complexing agents (%wt): Not yet determined	
	(%wt)
EDTA	0
DPTA	0
NTA	0

Polycarboxylic acids.....

Potentially present in trace amounts as arsenides in specialist semiconductors / electronics.

Included as boronated concrete.

Potentially present in trace amounts in specialist semiconductors / electronics / solders.

Included in specialist steels. Included in specialist steels.

Included in solders.

Type(s) and comment

Included in specialist steels.

TR

Other organic complexants	TR	

None expected from the primary waste stream but there may be some from secondary waste (e.g. protective clothing, swabs, cleaning materials).

Total complexing agents..... TR

Potential for the waste to Yes. contain discrete items:

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):	Treatment	On-si Off s	te / site	Stream volume %
	Low force compaction	On-	site	~~5.0
	Supercompaction (HFC)			~~15.0
	Incineration			
	Solidification			
	Decontamination			
	Metal treatment			
	Size reduction			
	Decay storage			
	Recyling / reuse			
	Other / various			
	None			~~80.0
Comment on planned treatments:	Treatment methods will depend on the exact natu at this stage. It is expected that the majority of sec compacted on-site prior to disposal for incineration	re of the w condary w n.	vaste whi aste and	ch is not known organics will be
Disposal Routes:	Disposal Route		Stream	Disposal 6 density t/m3
	Expected to be consigned to the LLW Repository	1	~~15.0)
	Expected to be consigned to a Landfill Facility		~~78.0)
	Expected to be consigned to an On-Site Disposa	I Facility		
	Expected to be consigned to an Incineration Faci	lity	~~7.0)
	Expected to be consigned to a Metal Treatment F	acility		
	Expected to be consigned as Out of Scope			
	Expected to be recycled / reused			
	Disposal route not known			

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %			
	2022/23	2023/24	2024/25	
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known				

Opportunities for alternative disposal routing:

Baseline Opportunity Management Route Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment

-

Waste Packaging for Disposal:

Container	%	m ³	Number of packages	
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other	~~15.0	~~14.5	2	

Other information:

Waste Planned for Disposal at the LLW Repository:

Yes.

_

Container voidage:	Expected to be <10%. No data available.
Waste Characterisation Form (WCH):	It is not yet determined if the waste meets LLWR's Waste Acceptance Criteria (WAC).

Waste consigned for	
disposal to LLWR in	
year of generation:	

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):
Waste stream variation:
Bounding cuboidal volume:

Inaccessible voidage:	-
Other information:	-

RADIOACTIVITY

Source:	Source of radioactivity is activation from neutron irradiation and contamination from tritium.
Uncertainty:	This waste will come from a plant which is still operational so the detailed information is not available.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	Calculated with the FISPACT code and validated by sampling and analysis. Specific tritium cannot be determined until the end of the JET project. Sampling and measurement will be used to characterise this waste.
Other information:	-

	Mean radioactivity. TBo/m ³				Mean radioactivity. ΤΒα/m ³					
	Waste at	Bands and	Future	Bands and		Waste at	Bands and	Future	Bands and	
Nuclide	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code	
H 3				7	Gd 153					
Be 10			0.45.00		Ho 163					
C 14			~3.1E-06	AD 2	H0 166m					
					Tm 170 Tm 171					
					1111171					
Δr 39					Lu 174					
Δr 42					Hf 178n					
K 40					Hf 182					
Ca 41					Pt 193					
Mn 53					TI 204					
Mn 54			6.4E-06	AD 2	Pb 205					
Fe 55			1.7E-02	AD 2	Pb 210					
Co 60			7.7E-03	AD 2	Bi 208					
Ni 59			1.2E-03	AD 2	Bi 210m					
Ni 63			6.3E-03	AD 2	Po 210					
Zn 65					Ra 223					
Se 79					Ra 225					
Kr 81					Ra 226					
Kr 85					Ra 228					
Rb 87					Ac 227					
Sr 90					Th 227					
Zr 93					Th 228					
Nb 91					Th 229					
Nb 92					Th 230					
Nb 93m					Th 232					
Nb 94					TH 234 Po 221					
Mo 93					Fd 231					
TC 97					Fa 233					
TC 99					U 232					
Ru 100 Pd 107					U 234					
Ag 108m			7 7E-05		U 235					
Ag 110m			1.7E-06	AD 2	U 236					
Cd 109			1.7 2 00	ND 2	U 238					
Cd 113m					Np 237					
Sn 119m					Pu 236					
Sn 121m					Pu 238					
Sn 123					Pu 239					
Sn 126					Pu 240					
Sb 125					Pu 241					
Sb 126					Pu 242					
Te 125m					Am 241					
Te 127m					Am 242m					
l 129					Am 243					
Cs 134					Cm 242					
Cs 135					Cm 243					
Cs 137					Cm 244					
Ba 133					Cm 245					
La 137					Cm 246					
La 138					Cff 240					
Ce 144					Cf 250					
Pm 145					Cf 251					
Pm 147					Cf 252					
Sm 147 Sm 151					Other a					
511 151 Eu 152					Other b/a			3.1E-06	AD 2	
Eu 152 Eu 154					Total a	0		NE	8	
Eu 155					Total b/g	0		3.23E-02	AD 2	

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3

C a factor of 10

D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity