SITE AWE Aldermaston

SITE OWNER Ministry of Defence

WASTE CUSTODIAN AWE plc

WASTE TYPE ILW

Is the waste subject to

Scottish Policy:

Stocks:

No

WASTE VOLUMES

Reported At 1.4.2022...... 0 m³

Future arisings - 1.4.2022 - 31.3.2080....... 87.0 m³

Total future arisings: 87.0 m³

Total future arisings: 87.0 m³
Total waste volume: 87.0 m³

Comment on volumes: AWE ceased cementation of redundant sources back in 2005 and now transports sources

to a treatment/transfer facility (via an expert contract partner), as the current BAT option. Future arising volumes are based on 2018-2021 disposal volumes projected until 2080, i.e. 1.5 m3 per year. This new prediction figure is similar to that predicted in the 2013, 2016 and 2019 UKRWI exercises. Stock volumes are recorded in a recently issued database and are considered accurate. The total volume of arisings will depend on the longevity of

the AWE site, with estimates being based on a site closure date of 2080.

Uncertainty factors on

WASTE SOURCE

volumes:

Stock (upper): x

Arisings (upper)

x 10.0

Stock (lower): x Arisings (lower) x 0.1

This waste stream comprises of miscellaneous ILW redundant sources that have been used for calibration of radiological equipment, assay/characterisation processes, and

experiments and research.

PHYSICAL CHARACTERISTICS

General description: The redundant sources contain solids and/or liquids with no gas inners.

Physical components (%wt): (Metal (63.08%), Plastic (31.43%) & Glass (5.49%)

Sealed sources: The waste contains sealed sources. The waste contains sealed sources. There are 100%

sealed and unsealed sources per waste stream.

Bulk density (t/m³): 0.278

Comment on density: The density was reviewed for the 2022 UKRWI and is based upon the last 6 years

disposals.

CHEMICAL COMPOSITION

General description and components (%wt):

Other ferrous metals (30.36%), alumium (14.65%), copper (1.40%), uranium (16.67%),

non-halogenated plastics (25.33%), PVC (6.10%), glass (5.49%).

Chemical state: Neutral

Chemical form of radionuclides:

H-3: Present in the waste stream in oxide / chloride form

C-14: Present in the waste stream in oxide / chloride / sulphate form

CI-36: May be present in waste stream in compound form, depending upon future demand Se-79: May be present in waste stream in compound form, depending upon future demand

Tc-99: Not present in the waste stream I-129: Not present in the waste stream

Ra: Present in the waste stream in oxide / chloride / sulphate form Th: Present in the waste stream in oxide / chloride / sulphate form

U: Present in waste stream as metal and metal oxide / metal chloride / metal sulphate

Np: Present in the waste stream in oxide / chloride / sulphate form Pu: Present in the waste stream in oxide / chloride / sulphate form

Metals and alloys (%wt): Not applicable.

	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel	0		activity
Other ferrous metals	30.4		
Iron	0		
Aluminium	14.7		
Beryllium	0		
Cobalt	0		
Copper	1.4		
Lead	0		
Magnox/Magnesium	. 0		
Nickel	0		
Titanium	0		
Uranium	16.7	Radiography source shielding & calibration /experiments	
Zinc	0		
Zircaloy/Zirconium	0		
Other metals	0		
Organics (%wt): Plastic is present in	the form of	of perspex for beta shielding.	
	(%wt)	Type(s) and comment	% of total C14 activity
Total cellulosics	0		activity
Paper, cotton	0		
Wood	0		
Halogenated plastics	6.1	PVC	
Total non-halogenated plastics	25.3		
Condensation polymers	25.3		
Others	0		
Organic ion exchange materials	0		
Total rubber	0		
Halogenated rubber	0		
Non-halogenated rubber	0		
Hydrocarbons	0		
Oil or grease	0		
Fuel	0		
Asphalt/Tarmac (cont.coal tar)	0		
Asphalt/Tarmac (no coal tar)	0		
Bitumen	0		
Others	0		
Other organics	0		
Other materials (%wt):			

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	0		acumy
Inorganic sludges and flocs	0		
Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	0		
Sand	0		
Glass/Ceramics	5.5	Glass	
Graphite	0		
Desiccants/Catalysts	0		
Asbestos	0		
Non/low friable	0		
Moderately friable	0		
Highly friable	0		
Free aqueous liquids	0		
Free non-aqueous liquids	0		
Powder/Ash	0		
Inorganic anions (%wt): Present but not total	alling more	than 1% by weight.	
	(%wt)	Type(s) and comment	
Fluoride	0		
Chloride	<<0.10		
lodide	0		
Cyanide	0		
Carbonate	0		
Nitrate	<<0.10		
Nitrite	0		
Phosphate	0		
Sulphate	<<0.10		
Sulphide	0		
Materials of interest for - waste acceptance criteria:			
	(%wt)	Type(s) and comment	
Combustible metals	0		
Low flash point liquids	0		
Explosive materials	0		
Phosphorus	0		
Hydrides	0		
Biological etc. materials	0		
Biodegradable materials	0		
Putrescible wastes	0		
Non-putrescible wastes	0		

	Corrosive materials	NE	
	Pyrophoric materials	NE	
	Generating toxic gases	NE	
	Reacting with water	NE	
	Higher activity particles	Р	Source
	Soluble solids as bulk chemical compounds	NE	
Hazardous s non hazardo	ubstances / - us pollutants:		
		(%wt)	Type(s) and comment
	Acrylamide	0	
	Benzene	NE	
	Chlorinated solvents	0	
	Formaldehyde	0	
	Organometallics	0	
	Phenol	NE	
	Styrene	0	
	Tri-butyl phosphate	NE	
	Other organophosphates	0	
	Vinyl chloride	Р	PVC
	Arsenic	NE	
	Barium	0	
	Boron	NE	
	Boron (in Boral)	NE	
	Boron (non-Boral)	NE	
	Cadmium	NE	
	Caesium	TR	
	Selenium	NE	
	Chromium	NE	
	Molybdenum	NE	
	Thallium	0	
	Tin	NE	
	Vanadium	NE	
	Mercury compounds	0	
	Others	NE	
	Electronic Electrical Equipment (EEE)		
	EEE Type 1	0	
	EEE Type 2	0	
	EEE Type 3	0	
	EEE Type 4	0	
	EEE Type 5	0	
	**		

Complexing agents (%wt): No

	(%wt)	Type(s) and comment
EDTA	0	
DPTA	0	
NTA	0	
Polycarboxylic acids	0	
Other organic complexants	0	No complexing agents present in the waste stream.
Total complexing agents	0	

Potential for the waste to contain discrete items:

No.

TREATMENT, PACKAGING AND DISPOSAL

Waste that is currently ILW:

High activity Am-241 and Co-60 sources are recycled and not disposed as waste. In omitting these activities, the total specific activities exceed neither 4.00E-03 TBq/m3 alpha nor 1.20E-02 TBq/m3 beta. Decay storage is not undertaken at AWE for waste stream 7A32. Sealed and Unsealed sources are disposed shortly after being deemed redundant, as to satisfy the requirements of Licence Condition 32.

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)		
Incineration		
Solidification		
Decontamination		
Metal treatment		
Size reduction		
Decay storage		
Recyling / reuse	Off-site	~5.0
Other / various	Off-site	~95.0
None		

Comment on planned treatments:

The bulk of the sources are consolidated at a Contractor's site and then sentenced through a final disposal solution, e.g. LLWR Burial, Combustion, Permitted LA-LLW, etc. Sources are re-used or recycled whenever possible. However, recycling/reuse tends to be available for higher activity sources, so the crux of the waste stream is shipped to an off-site Contractor's facility to be consolidated before final disposal.

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known	~5.0 ~95.0	0.29 0.28

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Noute	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

will be realised	Baseline Opportunity Management Route Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
------------------	--	----------------------	--	---------------------------	---------

Waste Packaging for Disposal: (Not applicable to this waste stream)

Container	Stream volume %	Waste loading m³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO			
1/2 Height WAMAC IP-2 ISO			
1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding)			
4m box (no shielding) Other			
Other			

Other information: At present, the disposal does not fall under any of the above, as this waste

stream is currently transferred to an off-site source disposal Contractor. This stance may alter in near distant future if/when the BAT option changes.

Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream)

Container voidage: -

-

Waste consigned for disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation: -

Bounding cuboidal volume:

Inaccessible voidage: -

Other information:

RADIOACTIVITY

Source: The source of activity could be from any number of radionuclides.

Uncertainty: The activity and radionuclides declared are not accurate, as they will vary depending on

what requires disposal in any given year.

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

The activity levels are determined from the 2018-2021 disposal figures. Decay corrections have not been undertaken as it is assumed that new sources will be bought and eventually disposed.

Other information:

	Mean radioactivity, TBq/m³				Mean radioactivity, TBq/m³				
	Waste at	Bands and	Future	Bands and		Waste at	Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code
H 3			~6.79E-05	DD 2	Gd 153				
Be 10					Ho 163				
C 14			~1.19E-07	DD 2	Ho 166m				
Na 22					Tm 170				
AI 26					Tm 171				
CI 36					Lu 174				
Ar 39					Lu 176				
Ar 42					Hf 178n				
K 40					Hf 182				
Ca 41					Pt 193				
Mn 53					TI 204				
Mn 54					Pb 205				
Fe 55					Pb 210				
Co 60			~7.55E-02	DD 2	Bi 208				
Ni 59					Bi 210m				
Ni 63			~5.3E-06	DD 2	Po 210				
Zn 65					Ra 223				
Se 79					Ra 225			4.05.00	D.D. 0
Kr 81					Ra 226			~1.8E-06	DD 2
Kr 85					Ra 228				
Rb 87			0.075.05	D.D. 0	Ac 227				
Sr 90			~6.97E-05	DD 2	Th 227			2.245.00	DD 3
Zr 93					Th 228	<u>.</u>		~2.34E-08	DD 2
Nb 91					Th 229 Th 230			~2.65E-10	DD 2
Nb 92					Th 232	ŀ		~2.65E-10 ~1.36E-09	DD 2
Nb 93m Nb 94					Th 234			~1.36E-09	DD 2
Mo 93					Pa 231			~5.92E-06	DD 2
Tc 97					Pa 233	1		~5.92L-00	DD 2
Tc 99					U 232				
Ru 106			~5E-11	DD 2	U 233				
Pd 107			0L 11	<i>DD</i> 2	U 234			~3.48E-04	DD 2
Ag 108m					U 235			~1.17E-05	DD 2
Ag 110m					U 236			~1.2E-06	DD 2
Cd 109			~2.03E-09	DD 2	U 238			~5.08E-04	DD 2
Cd 113m					Np 237			~9.75E-08	DD 2
Sn 119m					Pu 236	Ī			
Sn 121m					Pu 238			~1.4E-03	DD 2
Sn 123					Pu 239			~1.73E-05	DD 2
Sn 126					Pu 240			~1.39E-09	DD 2
Sb 125					Pu 241	Ī			
Sb 126					Pu 242				
Te 125m					Am 241			~1.7E-02	DD 2
Te 127m					Am 242m				
I 129					Am 243				
Cs 134					Cm 242				
Cs 135					Cm 243				
Cs 137			~2.05E-04	DD 2	Cm 244				
Ba 133	ļ		~4.21E-08	DD 2	Cm 245				
La 137					Cm 246				
La 138					Cm 248				
Ce 144					Cf 249				
Pm 145			4545 44	DD 0	Cf 250				
Pm 147			~4.51E-11	DD 2	Cf 251				
Sm 147					Cf 252]		~1.47E-06	DD 2
Sm 151			F 00F	55 -	Other a				
Eu 152			~5.02E-05	DD 2	Other b/g			~5.3E-05	DD 2
Eu 154					Total a	0		~1.93E-02	DD 2
Eu 155					Total b/g	0		~7.60E-02	DD 2

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000

Bands quantify uncertainty in Note: mean radioactivity.

Code

- 1 Measured activity
- 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
- 4 Not present

- 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity