SITE AWE Aldermaston

SITE OWNER Ministry of Defence

WASTE CUSTODIAN AWE plc

WASTE TYPE LLW

Is the waste subject to

Scottish Policy:

No

WASTE VOLUMES

Total waste volume: 166.1 m³

Comment on volumes: This code contains AWE's cemented sludges. It had been previously agreed that these

would be disposed as LLW under 7A27 (agreement with LLWR), but LLWR has not accepted these items since the introduction of discrete items in the LLWR WAC. Stock volumes are recorded in a database and are considered to be accurate. The total volume of arisings will depend on the BAT route for processing the sludge drums, which is subject

to change.

Uncertainty factors on

volumes:

Stock (upper): x 1.0 Stock (lower): x 1.0 Arisings (upper) x

Arisings (lower) x

WASTE SOURCE

Effluent treatment using ferric floc precipitation process to remove radioactivity from aqueous waste streams, which have originated from uranium and plutonium operations,

and been cemented.

PHYSICAL CHARACTERISTICS

General description: The waste consists of uranium and plutonium bearing sludges resulting from legacy

operations. The waste contains no items that require special handling. Solid component of the sludge has been concentrated by aqueous waste treatment processes. The sludge

has been mixed with cement to solidify inside 205 litre lost paddle steel drums.

Physical components (%wt):

The solid content is 100%.

Sealed sources:

The waste does not contain sealed sources.

Bulk density (t/m³):

1.87

Comment on density:

The figure has been reviewed and slightly adjusted for the 2022 UKRWI, and is an average

of all in-stock containers.

CHEMICAL COMPOSITION

General description and components (%wt):

Contains trace metals, other ferrous metal (12%) and cemented flocculant sludge (88%). This is an accurate description (2022) taken from an analysis report. The last RWI also identified the waste as being made up of uranium and plutonium bearing ferric hydroxide sludges. The waste contains silica as SiO2 (1.2%), iron as Fe2O3 (1.6%), calcium as CaO

(2.4%), sodium as Na2O (0.2%), carbonate as CO2 (1.9%), chloride as CI (0.1%), plutonium as oxide (<0.1%), uranium as oxide (<0.1%), heavy metals as oxides (<0.1%), potassium as sulphate (<0.1%), magnesium as hydroxide (<0.1%). As in the 2019 UKRWI, this data has been assumed to be correct and not reviewed for the 2022 UKRWI.

Chemical state: Alkali

Chemical form of radionuclides:

H-3: HT and HTO diffused present in waste stream. Small amount of organically bound

tritium may be present in solid form C-14: Not present in the waste stream Cl-36: Not present in the waste stream

Se-79: Not present in the waste stream Tc-99: Not present in the waste stream I-129: Not present in the waste stream

Ra: Only daughter products present from uranium in this waste stream. Oxide form Th: Only daughter products present from uranium in this waste stream. Oxide form

U: Present in the waste stream in oxide form

Np: Np-237 present in waste stream as oxide form from daughter product of Am-241 alpha

decay

Pu: Present in the waste stream in oxide form

2022 Inventory

Metals and alloys (%wt): No sheet metal.		_	
	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel	0		20
Other ferrous metals	12.0	Includes drum and lost paddle (both mild steel)	
Iron	0		
Aluminium	0		
Beryllium	TR		
Cobalt	TR		
Copper	TR		
Lead	TR		
Magnox/Magnesium	TR		
Nickel	TR		
Titanium	TR		
Uranium	TR		
Zinc	TR		
Zircaloy/Zirconium	TR		
Other metals	TR		
Organics (%wt): There are no organic	c materials	(other than traces of complexing agents)	
	(%wt)	Type(s) and comment	% of total C14
Total cellulosics	0		activity
Paper, cotton	0		
Wood	0		
Halogenated plastics	0		
Total non-halogenated plastics	0		
Condensation polymers	0		
Others	0		
Organic ion exchange materials	0		
Total rubber	0		
Halogenated rubber	0		
Non-halogenated rubber	0		
Hydrocarbons	0		
Oil or grease	0		
Fuel	0		
Asphalt/Tarmac (cont.coal tar)	0		
Asphalt/Tarmac (no coal tar)	0		
Bitumen	0		
Others	0		
Other organics	0		
Other meterials (9/ ut). The weste streem is			

2022 Inventory

The waste stream is a sludge

Other materials (%wt):

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	TR		
Inorganic sludges and flocs	63.0		
Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	25.0	Cement	
Sand	0		
Glass/Ceramics	0		
Graphite	0		
Desiccants/Catalysts	0		
Asbestos	0		
Non/low friable	0		
Moderately friable	0		
Highly friable	0		
Free aqueous liquids	0		
Free non-aqueous liquids	0		
Powder/Ash	0		
		chlorides, carbonates and phosphates we is estimated as 350 to 1100 ppm of tota	
	(%wt)	Type(s) and comment	
Fluoride	TR		
Chloride	0.10	350 to 1100 ppm	
lodide	0		
Cyanide	0		
Carbonate	1.9		
Nitrate	TR		
Nitrite	0		
Phosphate	TR		
Sulphate	<0.10		
Sulphide	TR		
Materials of interest for There are no hazard waste acceptance criteria:	dous matei	ials present in the walls.	
	(%wt)	Type(s) and comment	
Combustible metals	0		

0

0

0

0

Low flash point liquids.....

Explosive materials.....

Phosphorus.....

Hydrides.....

Biological etc. materials.....

Biodegradable materials.....

Putrescible wastes.....

	Non-putrescible wastes	0	
	Corrosive materials	0	
	Pyrophoric materials	0	
	Generating toxic gases	0	
	Reacting with water	0	
	Higher activity particles	0	
	Soluble solids as bulk chemical compounds	0	
Hazardous si			
	•	(%wt)	Type(s) and comment
	Acrylamide	0	Type(3) and comment
	Benzene	0	
	Chlorinated solvents	0	
	Formaldehyde	0	
	Organometallics	0	
	Phenol	0	
	Styrene	0	
	Tri-butyl phosphate	0	
	Other organophosphates	0	
	Vinyl chloride	0	
	Arsenic	P	0.34ppm
	Barium	0	о.о-тррпп
	Boron	P	0.84ppm
	Boron (in Boral)	Р	0.84ppm
	Boron (non-Boral)	0	о.о-тррпп
	Cadmium	P	0.51ppm
	Caesium	TR	о.этрріп
	Selenium	P	0.51nnm
	Chromium	P	0.51ppm
		P	4.21ppm
	Molybdenum Thallium		0.25ppm
	Tin	0	0.02nnm
		Р	0.93ppm
	Vanadium	P	0.34ppm
	Mercury compounds	0	TD
	Others	Р	TR
	Electronic Electrical Equipment (EEE)	0	
	EEE Type 1	0	
	EEE Type 2	0	
	EEE Type 3	0	
	EEE Type 4	0	
	EEE Type 5	0	

Complexing agents (%wt): No

	(%wt)	Type(s) and comment
EDTA	0	
DPTA	0	
NTA	0	
Polycarboxylic acids	0	
Other organic complexants	0	The waste stream does not contain any complexing agents.
Total complexing agents	0	

Potential for the waste to contain discrete items:

Yes. These items are cemented drums likely to go to LLWR for burial at the

rete items: repository near Drigg.

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)		
Incineration		
Solidification		
Decontamination		
Metal treatment		
Size reduction		
Decay storage		
Recyling / reuse		
Other / various		
None	Off-site	100.0

Comment on planned treatments:

AWE is awaiting confirmation from LLWR that this waste cannot be accepted on a variation, as it was acceptable up until June 2014. The average alpha activity is 3800 Bq/g so is LLW, but does not fall under the discrete items' limit.

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known	100.0	1.9
Disposar route flot known	100.0	1.5

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %			
Disposal Notice	2022/23	2023/24	2024/25	
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known				

Opportunities for alternative disposal routing: Not yet determined

Estimated

Date that Opportunity Opportunity Baseline Stream Opportunity Comment volume (%) Confidence Management Route Management Route will be realised

Waste Packaging for Disposal: (Not applicable to this waste stream)

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other			

Other information: Will only go into a HHISO if the waste is accepted at the LLWR. Some voidage

will be filled with small packages from the 7A27 waste stream and there will be

no inaccessible voidage.

Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream)

Container voidage:

Waste Characterisation

Form (WCH):

The waste does not meet the LLWR's Waste Acceptance Criteria (WAC).

The waste does not have a current WCH.

Average alpha activity is 3800 Bq/g, which is classifed as LLW but does not meet

the discrete items criteria.

Waste consigned for disposal to LLWR in year of generation:

No. This waste was being drip fed to the LLWR when AWE had an annual

allocation. Most of the cemented drums were generated in 2007.

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation:

Bounding cuboidal volume:

Inaccessible voidage:

Other information:

RADIOACTIVITY

Source: Plutonium, urnaium and tritium. With traces of Cs-137, Fe-55 and Co-60.

Accurate data based on assay of sludge from water treatment tanks (minimal variation). Uncertainty:

Definition of total alpha

The total alpha and total beta/gamma figures are the sum of the listed alpha and beta/gamma radionuclides.

and total beta/gamma:

The activity contained within the sludge is determined by sampling and using destructive Measurement of radioactivities:

assay. Decay nuclides with a half-life of less than 3 months have been omitted.

Other information:

WASTE STREAM Cemented Sludges 7A41

	Mean radioactivity, TBq/m³			Mean radioa	n radioactivity, TBq/m³				
Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code	Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code
H 3	1.86E-04	AA 1			Gd 153				
Be 10					Ho 163				
C 14					Ho 166m				
Na 22					Tm 170				
Al 26					Tm 171				
CI 36					Lu 174				
Ar 39					Lu 176				
Ar 42					Hf 178n				
K 40					Hf 182				
Ca 41					Pt 193				
Mn 53					TI 204				
Mn 54	2.025.07	^ ^ 4			Pb 205		_		
Fe 55	3.92E-07	AA 1 AA 1			Pb 210 Bi 208		5		
Co 60 Ni 59	1.73E-06	AA I			Bi 200 Bi 210m				
Ni 63					Po 210		5		
Zn 65					Ra 223		5		
Se 79					Ra 225		5		
Kr 81					Ra 226		5		
Kr 85					Ra 228		5		
Rb 87					Ac 227		5		
Sr 90					Th 227		5		
Zr 93					Th 228		5		
Nb 91					Th 229		5		
Nb 92					Th 230		5		
Nb 93m					Th 232		5		
Nb 94					Th 234		5		
Mo 93					Pa 231		5		
Tc 97					Pa 233		5		
Tc 99					U 232		_		
Ru 106					U 233		5		
Pd 107					U 234	4.89E-03	AA 1		
Ag 108m					U 235	1.72E-04	AA 1		
Ag 110m Cd 109					U 236 U 238	4.38E-05	AA 1 AA 1		
Cd 109 Cd 113m					Np 237	1.72E-03	5		
Sn 119m					Pu 236		3		
Sn 121m					Pu 238	2.09E-06	A A 1		
Sn 123					Pu 239	4.46E-05	AA 1		
Sn 126					Pu 240	1.05E-05	A A 1		
Sb 125					Pu 241	4.75E-03	A A 1		
Sb 126					Pu 242	2.09E-09	AA 1		
Te 125m					Am 241	6.47E-05	A A 1		
Te 127m					Am 242m				
l 129					Am 243				
Cs 134					Cm 242				
Cs 135					Cm 243				
Cs 137	6.26E-05	AA 1			Cm 244				
Ba 133					Cm 245				
La 137					Cm 246				
La 138					Cm 248				
Ce 144					Cf 249				
Pm 145					Cf 250				
Pm 147					Cf 251				
Sm 147					Cf 252				
Sm 151 Eu 152					Other a Other b/g				
Eu 152 Eu 154					Total a	6.95E-03	AA 1	0	
Eu 154 Eu 155					Total a	5.00E-03	AA 1 AA 1	0	
l l	Inner and Lowe				Code	1 5.502-03	74	· ·	

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

- 1 Measured activity
 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity 8 Not expected to be present in significant quantity