SITE	HMNB Devonport			
SITE OWNER	Ministry of Defence			
WASTE CUSTODIAN	Babcock International Group			
WASTE TYPE	LLW			
Is the waste subject to Scottish Policy:	No			
WASTE VOLUMES		Reported		
Stocks:	At 1.4.2022	10.2 m³		
Future arisings -	1.4.2022 - 31.3.2030	~110.4 m ³		
Total future arisings:		110.4 m³		
Total waste volume:		120.6 m³		
Comment on volumes:	Arisings are dependent upon the level of submarine refit and maintenance activity that is carried out. Arisings have been calculated using best available data.			
Uncertainty factors on	Stock (upper): x 1.3		Arisings (upper)	x 2.0
volumes:	Stock (lower): x 0.7		Arisings (lower)	x 0.5
WASTE SOURCE	The waste is produced as a conseque propulsion programme e.g. reactor pl	ence of the g ant mainten	general support of ance and refuelling	Naval nuclear J operations.

PHYSICAL CHARACTERISTICS

General description:	Solid low level waste for disposal to the NWS, comprising metal items of varying size from contaminated tools to large plant items. Other items include metal pipes, valves, swarf, glass and thermal lagging materials and mild steel waste drums. All items derive from the submarines or from shore based facilities. Large items do occasionally originate from the nuclear submarine reactor plant or from support services. In these instances the item will be classified as non-compactable waste and will be packed into half height ISO containers, or other container, as agreed by NWS Ltd, for disposal as non-compactable waste. Material may have been size reduced to fit within 200l drum. Certain large items of hard waste could be consigned as being non-compactable waste should they satisfy the NWS CFA.
Physical components (%wt):	Metal (94%), soil/rubble (1%), biodegradable-non putrescibles (1%), plastic/rubber (3%), others (1%).
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	0.6
Comment on density:	The average density of hard trash within 200 litre drums is 600 kg/m ³ .
CHEMICAL COMPOSITION	I

The waste consists of mainly metallic components primarily stainless steel. There are lesser amounts of mild steel, iron and also aluminium. Drums are mild steel. Other constituents of the stream are calcium silicate lagging, glass. There will be small amounts of polythene within drums along with other soft organics, e.g. paper.
Neutral
H-3: Potential to be present as tritiated water adhered to internal surface of pipes (0.4% of total activity). C-14: Present in waste in various chemical forms, predominately carbonate, (5% of total activity iaw extant WCH).
Large primary circuit components will be classed as non-compactable waste and will be disposed of in half height ISO containers, or other, as agreed with NWS Ltd. Difficult to provide dimensional information. Total percentage of waste <<10% of current arisings.

	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel	. Р	316L stainless steel	
Other ferrous metals	. ~83.8	Mild Steel Drum	
Iron	i		
Aluminium			
Beryllium			
Cobalt	. Р	In the form of mild/stainless steel for example stellite	
Copper			
Lead	•		
Magnox/Magnesium			
Nickel			
Titanium			
Uranium			
Zinc	. ~0.11	As a metal in solid form.	
Zircaloy/Zirconium			
Other metals	. ~10.1	Stellite is present in certain valve seats. Other metals include Chromium and Molybdenum	
Organics (%wt): There will be small and possibly cotton mass of metal pres	quantities . The perc ent in the v	of organic material in the waste, namely p entage composition is very small when co waste stream.	oolythene, paper mpared to the tota
	(%wt)	Type(s) and comment	% of total C14 activity
Total cellulosics	~1.0	Paper/cotton.	
Paper, cotton	~1.0	Paper/cotton.	
Wood	0		
Halogenated plastics	0		
Total non-halogenated plastics	2.0	e.g. Polythene	
Condensation polymers	0		
Others	2.0	Polythene	
Organic ion exchange materials	0		
Total rubber	1.0		
Halogenated rubber	0		
Non-halogenated rubber	1.0		
Hydrocarbons	0		
Oil or grease			
Fuel			

0

Other materials (%wt):

Asphalt/Tarmac (cont.coal tar)... Asphalt/Tarmac (no coal tar).... Bitumen.... Others... Other organics...

-

WASTE STREAM 7D23 Devonport RA Hard Trash (for Disposal to NWS)

	(%wt)	Type(s) and comment	% of total C14
Inorganic ion exchange materials.	0		activity
Inorganic sludges and flocs	0		
Soil	0		
Brick/Stone/Rubble	~0.50		
Cementitious material	~0.50		
Sand			
Glass/Ceramics	~1.0	Glass	
Graphite	0		
Desiccants/Catalysts			
Asbestos	0		
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids	0		
Free non-aqueous liquids	0		
Powder/Ash	0		

(%wt)

Inorganic anions (%wt):

Silicate from lagging is the only inorganic anion in the waste. However this will reduce in forthcoming years because new re-usable metallic lagging is being installed onto the submarine reactor plant.

Type(s) and comment

Fluoride	0
Chloride	0
lodide	0
Cyanide	0
Carbonate	0
Nitrate	0
Nitrite	0
Phosphate	0
Sulphate	0
Sulphide	0

_

Materials of interest for waste acceptance criteria:

	(%wt)	Ту
Combustible metals	0	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	0	
Hydrides	0	
Biological etc. materials	0	
Biodegradable materials	1.0	
Putrescible wastes	0	

Type(s) and comment

WASTE STREAM 7D23 Devonport RA Hard Trash (for Disposal to NWS)

Non-putrescible wastes	~1.0
Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	TR
Higher activity particles	NE
Soluble solids as bulk chemical compounds	0

Hazardous substances / non hazardous pollutants:

There are no heavy metals in the waste. Certain identified items may contain boron-10 (<<0.1%) in nucleonic instrumentation and also titanium (<1%). Prior to consignment offsite, approval from NWS to accept waste will be obtained by D5 route. All documentation to comply with special waste regulations is also generated.

(%wt) Type(s) and comment

Acrylamide	
Benzene	0
Chlorinated solvents	
Formaldehyde	
Organometallics	
Phenol	0
Styrene	
Tri-butyl phosphate	0
Other organophosphates	
Vinyl chloride	0
Arsenic	0
Barium	
Boron	NE
Boron (in Boral)	NE
Boron (non-Boral)	NE
Cadmium	0
Caesium	
Selenium	0
Chromium	~8.8
Molybdenum	~1.4
Thallium	
Tin	0
Vanadium	0
Mercury compounds	
Others	NE
Electronic Electrical Equipment (EEE)	
ЕЕЕ Туре 1	
ЕЕЕ Туре 2	
EEE Type 3	
EEE Type 4	
EEE Type 5	

2022 Inventory

Potential for the waste to

contain discrete items:

Planned on-site / off-site

treatment(s):

7D23

Complexing agents (%wt): No

	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		There are no organic complexing agents in the waste.
Total complexing agents	NE	

Yes. Some items may be discrete items; however, the activities routinely seen make it unlikely to fall into this category.

TREATMENT, PACKAGING AND DISPOSAL

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)	Off-Site	~7.5
Incineration	Off-site	~17.5
Solidification		
Decontamination		
Metal treatment		
Size reduction		
Decay storage		
Recyling / reuse	Off-site	~~32.5
Other / various		
None	Off-site	~42.5

Comment on planned treatments:

Disposal Routes:

Aprroximate stream volumes derived from current holdings.

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository	~22.5	~0.60
Expected to be consigned to a Landfill Facility	~27.5	~0.60
Expected to be consigned to an On-Site Disposal Facility		
Expected to be consigned to an Incineration Facility	~17.5	~0.60
Expected to be consigned to a Metal Treatment Facility		
Expected to be consigned as Out of Scope		
Expected to be recycled / reused	~~32.5	~~0.60
Disposal route not known		

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

-

Disposal Route	Stream volume %				
	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	-	-	-	-	-

-

Waste Packaging for Disposal:

Stream volume (%):

Container		Stream volume %	Waste loading m ³	Number of packages < 1	
1/3 Height IP-1 ISC 2/3 Height IP-2 ISC 1/2 Height WAMAC 1/2 Height IP-2 Disp 2m box (no shieldir 4m box (no shieldir Other) ; IP-2 ISO posal/Re-usable ISO ig) ig)	~22.5	~39.39		
her information:	A typical conditioning factor fo displaced volume of the 200 l Disposal/ Reusable ISO (TCC	or 7D23 drums is 0.3 itre drum. It is assur 1/TC02) will approx	33 relative to the o ned each 1/2 Heig imatively have a 13	riginal ht IP-2 3m3 waste	

loading which equates to approximately 39 m3 of raw waste

Waste Planned for Disposal at the LLW Repository:

Container voidage:	<10%. Openings into plant items are covered with soluble polythene and vent holes are drilled into large items. When grouting occurs the grout should be able to permeate fully into the item.
Waste Characterisation Form (WCH):	The waste meets the LLWR's Waste Acceptance Criteria (WAC). The waste has a current WCH. Inventory information is consistent with the current WCH.
Waste consigned for disposal to LLWR in year of generation:	No. Not always consigned in the year of generation. Waste is consigned for conditioning on a batch basis. It is therefore possible that waste will be retained until sufficient drums (68) for a 'full' load is available for consignment to Tradebe Inutec Winfrith for supercompaction prior to consignment to NWS.

Non-Containerised Waste for In-Vault Grouting:	(Not applicable to this waste stream)
--	---------------------------------------

Waste stream variation:	-
Bounding cuboidal volume:	
Inaccessible voidage:	-
Other information:	-
RADIOACTIVITY	
Source:	Contamination of plant items through contact with the submarine primary plant. Minor neutron activation of components can also occur. Major nuclides at time of generation are Fe-55 (34%), Co-60 (41%), C-14 (5%), Mn-54 (1.3%), Ni-63 (1.6%) and others.
Uncertainty:	The drum monitor assesses the gamma activity of the waste using a segmented gamma spectroscopy system. The system accuracy is assessed to be $\pm 20\%$ of gamma activity. Activity of other beta/gamma nuclides associated with the waste is assessed using a generic fingerprint relative to the measured Co-60 activity. Accuracy of the total activity measurement and assessment is considered to be within 50%.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

WASTE STREAM	7D23 Devonport RA Hard Trash (for Disposal to NWS)
Measurement of radioactivities:	Co-60 is measured directly by the drum monitor system using segmented gamma spectroscopy. Other gamma emitters will also be detected if present within the waste. The fingerprint has been derived by the use of best available sampling information and accepted international practice to determine correlations and relationships. All other nuclides are determined relative to Co-60 activity. Specific activity figures have been derived from current stock data and represent a reasonably consistent waste origin, therefore future arisings, which are expected to remain consistent, can only be estimated based on the same SA estimated figure i.e. the values are specific activity not total activity (which would vary depending on expected volume).
Other information:	Drummed waste is subjected to gamma spectrometry. Beta nuclides are apportioned to Co- 60 activity in normalised ratios.

WASTE STREAM 7D23 Devonport RA Hard Trash (for Disposal to NWS)

Mate at Banck and (140202 Goode (140202 Wate at (140202 Banck and prising (140202 Bunck and (140202 Wate at (140202 Banck and prising (14020 Bunck and (14020 Bunck and prising (14020 Bunck and (14020		Mean radioactivity, TBq/m ³					Mean radioa	ctivity, TBq/m ³		
H3 -2.20E-09 BB 2 -2.20E-07 BB 2 -2.30E-07 BB 2 -2.30E-07 BC 2 -2.20E-07 BB 2 -2.30E-07 BC 2 -3.30E-12 CC 2 Lin 171 H 173 H 173 H 173 H 173 H 173 H 173 <th>Nuclide</th> <th>Waste at</th> <th>Bands and</th> <th>Future</th> <th>Bands and</th> <th>Nuclide</th> <th>Waste at</th> <th>Bands and</th> <th>Future</th> <th>Bands and</th>	Nuclide	Waste at	Bands and	Future	Bands and	Nuclide	Waste at	Bands and	Future	Bands and
Bas 10 -2.705.00 US 10 -2.705.00 US 10 -2.705.00 US 10 -7.705.00 <td>НЗ</td> <td>1.4.2022</td> <td>BB 2</td> <td>2 78E-09</td> <td></td> <td>Gd 153</td> <td>1.4.2022</td> <td>Code</td> <td>ansings</td> <td>Code</td>	НЗ	1.4.2022	BB 2	2 78E-09		Gd 153	1.4.2022	Code	ansings	Code
C14 -2.95E-07 B8 2 -2.95E-07 CC 2 Ho168m N322 -1.27E-11 B8 2 -2.95E-07 CC 2 Ho168m N362 -1.27E-11 B8 2 -6.51E-12 CC 2 Ho168m A126 -6.51E-12 B8 2 -6.51E-12 CC 2 Hu174 A126 -3.77E-06 B8 2 -1.69E-06 CC 2 PP 205 F656 -1.69E-06 B8 2 -1.69E-06 CC 2 PP 201 N163 -2.69E-68 B8 2 -2.69E-66 CC 2 PP 210 N163 -2.69E-66 B8 2 -2.69E-66 CC 2 PP 210 N163 -2.69E-66 B8 2 -2.69E-66 CC 2 PP 210 N163 -2.27E-68 B8 2 -2.29E-66 CC 2 PP 230 N163 -1.89E-67 B8 <td>Be 10</td> <td>~2.762-03</td> <td></td> <td>~2.70E-03</td> <td>00 2</td> <td>Ho 163</td> <td></td> <td></td> <td></td> <td></td>	Be 10	~2.762-03		~2.70E-03	00 2	Ho 163				
NA22 -1.2TE-11 BB 2 -1.2TE-11 CC 2 Tm 170 m 171 m 172 m	C 14	~2.95E-07	BB 2	~2.95E-07	CC 2	Ho 166m				
Alge Alge Alge Alge Alge Alge Th 171 C136 -6.51E-12 BB 2 -6.51E-12 CC 2 H174 Ar 30 -	Na 22	~1.27E-11	BB 2	~1.27E-11	CC 2	Tm 170				
C136 0.51E-12 BB 2 0.51E-12 CC 2 LU 76 H1 780 H1 780 H1 1780 H1 180 H1 180	AI 26					Tm 171				
Ar-32 Ar-32 Ar-32 Lu 76 H178 H178 H178 K-40 H-12 H178 H178 H178 H178 H178 Mn 53 -3.78E-08 BB 2 -3.78E-08 CC 2 P205 Fe56 -169E-08 BB 2 -169E-06 CC 2 P207 Fe65 -169E-08 BB 2 -169E-06 CC 2 P2010 Fe57 Fe56 -169E-08 BB 2 -169E-08 CC 2 P2010 N163 -4.67E-08 BB 2 -1.21E-08 CC 2 P2010 Fe57	CI 36	~6.51E-12	BB 2	~6.51E-12	CC 2	Lu 174				
Ar.42 Image: Marting the section of the sectin of the section of the sectin of the section of the se	Ar 39					Lu 176				
K 40 Image: Section of the sectin of the section of the section of the section o	Ar 42					Hf 178n				
Ca 41 Mn 53	K 40					Hf 182				
Min 53 -3.78E-08 BB 2 -1.78E-08 CC 2 Pb 210 Fe 55 -1.69E-06 BB 2 -1.69E-06 CC 2 Pb 210 N 54 -2.69E-08 BB 2 -2.69E-08 CC 2 B203 N 56 -4.47E-08 BB 2 -1.72E-08 CC 2 Pb 210 Zn 65 -1.21E-08 BB 2 -1.67E-08 CC 2 Pb 210 S 709 -1.72E-08 BB 2 -1.72E-08 CC 2 Ra 225 Kr 81 -1.72E-08 BB 2 -1.72E-08 CC 2 Na 228 Ac 271 S 700 -3.38E-12 BB 2 -3.38E-12 CC 2 Ph 231 N 94	Ca 41					Pt 193				
m1134 -3,062-00 b3 2 -3,062-00 C 2 P1 2010 F6 56 -1.862-06 B8 2 -1.802-06 C 2 B1 200 N163 -2.2667-08 B8 2 -1.802-06 C 2 B2 200m N163 -4.677-08 B8 2 -4.677-08 C 2 P2 210 Se 70 -1.121-08 C 2 P2 210 Ra 223 Ra 225 Ra 223 Kr 85 -3.38E-12 B8 2 -1.212-08 C 2 P2 210 Ra 223 Sr 80 -3.38E-12 B8 2 -1.212-08 C 2 Ra 228 Ra 228 Nb 91	Mn 53	2 705 00				11 204 Pb 205				
1-1.082-06 BB 2 1-1.082-06 BB 2 -2.660-08 BB 2 -2.660-08 CC 2 B120m N163 -2.660-08 BB 2 -2.660-08 CC 2 P2.010 Ra225 Zn.65 -1.21E-08 BB 2 -1.21E-08 CC 2 Ra225 Ra225 Kr.85 -3.38E-12 BB 2 -3.38E-12 CC 2 Th 228 Ra225 Yr.85 -3.38E-12 BB 2 -3.38E-12 CC 2 Th 228 Ra226 Nb 94	IVIN 54	~3.78E-08		~3.78E-08		Pb 203				
0.000 -1.0000 BB 2 -1.00000 CC 2 B-10m N153 -4.6700 BB 2 -4.6700 CC 2 Po 210 N163 -4.6700 BB 2 -4.6700 CC 2 Po 210 Se 79 -1.210-08 BB 2 -1.210-08 CC 2 Ra 223 Ra 225 Kr 81 -1.3380-12 BB 2 -3.380-12 CC 2 Th 227 Fa 225 Ra 223 Ra 223 Ra 223 Ra 223 Ra 225 Ra 25 Ra 25 Ra 25	Co 60	~1.09E-00	BB 2	~1.09E-00		Bi 208				
N163 -4.67E-08 BB 2 -4.67E-08 CC 2 Pa 210 2n 66 -1.21E-08 BB 2 -1.21E-08 CC 2 Pa 223 Pa 225 Pa 226	Ni 59	~1.09E-00	BB 2	~1.89E-00		Bi 210m				
2.066 Se 79 Kr 81 Kr 85 Kr 81 Kr 85 Kr 85 Kr 85 -1.21E-08 CC 2 Ra 223 Ra 225 Ra 226 Ra 228 Ra 226 Ra 228 Ra 226 Ra 228 Ra 226 Ra 228 Ra 226 Ra 228 Ra 28 Ra 28	Ni 63	~4 67E-08	BB 2	~4 67E-08	CC 2	Po 210				
Se 79 Kr 81 Kr 85 Kr 85 Kr 85 Kr 85 Sr 90 -3.38E-12 BB 2 -3.38E-12 C 2 R2 25 R2 26 R2 26 R2 26 R2 28 Ac 227 H<	Zn 65	~1.21E-08	BB 2	~1.21E-08	CC 2	Ra 223				
Kr86 Kr86 Kr86 Kr86 Sr90 -3.38E-12 BB 2 -3.38E-12 CC 2 R228 A227 Th 227	Se 79					Ra 225				
Kr.85 -3.38E-12 BB 2 -3.38E-12 CC 2 7 7 8 2 -3.38E-12 CC 2 7 7 8 2 -2.38E-12 CC 2 7 </td <td>Kr 81</td> <td></td> <td></td> <td></td> <td></td> <td>Ra 226</td> <td></td> <td></td> <td></td> <td></td>	Kr 81					Ra 226				
Rb 87 3.38E-12 BB 2 3.38E-12 CC 2 Th 227 Zr 93 3.38E-12 BB 2 3.38E-12 CC 2 Th 227 Nb 91	Kr 85					Ra 228				
Sr 90 -3.38E-12 BB 2 -3.38E-12 CC 2 III 22/1 Sr 90 -3.38E-12 CC 2 III 22/1 Th 228 Nb 91	Rb 87					Ac 227				
	Sr 90	~3.38E-12	BB 2	~3.38E-12	CC 2	Th 227				
No 91 No 93 No 93m	Zr 93					Th 229				
N0 93/2 N0 93/2 Th 232 Th 234 N0 93/2 -2.20E-11 BB 2 -2.20E-11 CC 2 Th 234 Pa 231 Pa 233 Pa 233 Pa 233 Pa 233 Pd 107 BB 2 -1.80E-13 BB 2 -1.80E-13 CC 2 U232 Pd 107 -1.74E-11 BB 2 -1.74E-11 CC 2 U235 U236 Ag 100m -1.74E-11 BB 2 -1.74E-11 CC 2 U236 U238 Ag 100m -3.58E-07 BB 2 -3.58E-07 CC 2 U236 U238 Sh 126 -3.07E-08 BB 2 -3.07E-08 CC 2 Pu 230 Pu 230 Sh 126 -3.07E-08 BB 2 -3.07E-08 CC 2 Cm 242 Am 241 Am 241 Am 243 Am 244 Am 244 Am 244<	ND 91					Th 230				
No 94 Me 93 C 97 -2.20E-11 BB 2 -2.20E-11 CC 2 Pa 231 Pa 231 Pa 233 U 236 U 236 U 236 U 236 U 236 U 236 U 238 N 237 Pu 236 Pu 238 Pu 238 P	ND 92 Nb 93m					Th 232				
Mo 93 Te 97 No 90 2.20E-11 BB 2 2.20E-11 CC 2 Pa 231 Pa 233 Pa 233 Pa 233 Tc 97 Tc 99 1.80E-13 BB 2 1.80E-13 CC 2 U232 U233 U234 Pa 106 1.74E-11 BB 2 1.74E-11 CC 2 U234 U234 Ag 100m 1.74E-11 BB 2 1.74E-11 CC 2 U236 U236 Ag 110m 3.58E-07 BB 2 3.58E-07 CC 2 U238 U238 Sh 12m	Nb 94					Th 234				
Tc 97 Tc 99 -1.80E-13 BB 2 -1.80E-13 CC 2 U232 U 233 U 234 U 234 U 234 U 234 U 234 U 234 U 234 U 236 U 236 U 236 U 236 U 238 U 236 U 238 U 236 U 238 U 238 U 236 U 238 U 238 D 2	Mo 93	~2.20E-11	BB 2	~2.20E-11	CC 2	Pa 231				
Tc 99 -1.80E-13 BB 2 -1.80E-13 CC 2 U232 U233 Ru 106 -1.74E-11 BB 2 -1.74E-11 CC 2 U235 U236 Ag 108m -1.74E-11 BB 2 -1.74E-11 CC 2 U235 U236 Ag 109m -3.58E-07 BB 2 -3.58E-07 CC 2 U236 U238 Cd 113m -3.58E-07 BB 2 -3.58E-07 CC 2 U238 Np 237 Sh 126 -3.07E-08 BB 2 -3.07E-08 CC 2 Pu 238 Pu 239 Sh 126 -3.07E-08 BB 2 -3.07E-08 CC 2 Pu 241 Sh 126 -9.89E-12 BB 2 -9.89E-12 CC 2 Am 241 Te 127m -4.35E-10 BE 2 -4.35E-10 CC 2 Cm 243 Cs 136 -1.64E-09 BB 2 -1.64E-09 CC 2 Cm 246 Cs 137 -1.64E-09 BB 2 -1.64E-09 CC 2 Cm 246 Ca 138 -1.64E-09 BB 2 -1.64E-09 CC 2 Cm 246 Ca 138 -1.64E-09 CB 2	Tc 97					Pa 233				
Ru 106 U233 U233 U234 Pd 107 1.74E-11 BB 2 1.74E-11 CC 2 U235 Ag 108 3.58E-07 BB 2 3.58E-07 CC 2 U236 U236 Cd 109 3.58E-07 BB 2 3.58E-07 CC 2 U236 U236 Sh 120	Tc 99	~1.80E-13	BB 2	~1.80E-13	CC 2	U 232				
Pd 107 -1.74E-11 BB 2 -1.74E-11 CC 2 U 235 Ag 100m -3.58E-07 BB 2 -3.58E-07 CC 2 U 235 Cd 109 -3.58E-07 BB 2 -3.58E-07 CC 2 U 236 Cd 109 -3.58E-07 BB 2 -3.58E-07 CC 2 U 236 Sh 121 Np 237 Pu 236 Pu 236 Pu 236 Pu 236 Sh 123 -3.07E-08 BB 2 -3.07E-08 CC 2 Pu 230 Pu 230 Sh 125 -3.07E-08 BB 2 -3.07E-08 CC 2 Pu 240 Pu 240 Sb 126 -3.07E-08 BB 2 -3.07E-08 CC 2 Ma 241 -4.71E-12 BB 2 -4.71E-12 CC 2 Sh 126 -3.07E-08 BB 2 -1.64E-09 CC 2 Cm 242 Am 243 Cm 243 Cm 244 Cm 244 Cm 244 Cm 245 Cm 244 Cm 246	Ru 106					U 233				
Ag 108m -1.74E-11 BB 2 -1.74E-11 CC 2 0 236 Ag 110m -3.58E-07 BB 2 -3.58E-07 CC 2 0 236 Cd 109 -3.58E-07 BB 2 -3.58E-07 CC 2 0 236 Cd 113m	Pd 107					U 234				
Ag 110m 3.58E-07 BB 2 3.58E-07 CC 2 0 238 Cd 109 Np 237 Np 237 Np 236 Np 237 Np 236 Sh 121m Np 237 Pu 236 Pu 238 Pu 239 Pu 239 Sh 126 Sb 125 3.07E-08 BB 2 3.07E-08 CC 2 Pu 240 Sb 126 Te 125m	Ag 108m	~1.74E-11	BB 2	~1.74E-11	CC 2	U 235 11 236				
Cd 109 Cd 113m Sn 119m Sn 119m Pu 236 Pu 238 Pu 238 Pu 230 Pu 230 Pu 230 Pu 240 Pu 240 Pu 240 Pu 240 Pu 240 Pu 241 Pu 242 Am 242m Am 244 Cm 243 Cm 243 Cm 244 Cf 250 Cm 246 Cf 250 Cm 246 Cf 250	Ag 110m	~3.58E-07	BB 2	~3.58E-07	CC 2	U 238				
Su 113m Fu 236 Pu 236 Pu 238 Pu 239 Pu 239 Pu 239 Pu 240	Cd 109					Np 237				
Sn 10.1m Sn 121m Pu 238 Pu 239 Pu 239 Pu 240 Pu 240 Pu 241 Pu 242 Am 241 A.71E-12 BB 2 -4.71E-12 CC 2 Am 242m Te 125m - - -9.89E-12 BB 2 -9.89E-12 CC 2 Am 243 -4.71E-12 BB 2 -4.71E-12 CC 2 Cm 243 Cs 134 -4.35E-10 BB 2 -4.35E-10 CC 2 Cm 243 Cm 243 -4.71E-12 B - -4.71E-12 CC 2	Sn 119m					Pu 236				
Sn 123 Sn 126 Pu 239 Pu 240 Pu 241	Sn 121m					Pu 238				
Sn 126 Pu 240 Pu 240 Pu 241 Pu 241 Pu 241 Pu 241 Pu 242 Pu 241 Pu 242	Sn 123					Pu 239				
Sb 125 -3.07E-08 BB 2 -3.07E-08 CC 2 Pu 241 Pu 242 -4.71E-12 BB 2 -4.71E-12 CC 2 2 Te 125m -9.89E-12 BB 2 -9.89E-12 CC 2 Am 241 -4.71E-12 BB 2 -4.71E-12 CC 2 2 I 129 -9.89E-12 BB 2 -9.89E-12 CC 2 Am 243 Cm 242 Cm 243 -4.71E-12 B 2 -4.71E-12 CC 2 2 Cs 134 -4.35E-10 BB 2 -4.35E-10 CC 2 Cm 243 Cm 243 -4.71E-12 CC 4 -4.71E-12 <td< td=""><td>Sn 126</td><td></td><td></td><td></td><td></td><td>Pu 240</td><td></td><td></td><td></td><td></td></td<>	Sn 126					Pu 240				
Sb 126 FU 242 Am 241 -4.71E-12 BB 2 -4.71E-12 CC 2 Te 125m -9.89E-12 BB 2 -9.89E-12 CC 2 Am 243 -4.71E-12 BB 2 -4.71E-12 CC 2 I 129 -9.89E-12 BB 2 -9.89E-12 CC 2 Am 243 -4.71E-12 B 2 -4.71E-12 C 2 - -4.71E-12 C 2	Sb 125	~3.07E-08	BB 2	~3.07E-08	CC 2	Pu 241				
Te 125m Am 247m Am 242m Am 242m Am 242m Am 242m Am 243m I 129 ~9.89E-12 BB 2 ~9.89E-12 C C 2 Cm 242 Cm 243 Cs 134 ~4.35E-10 BB 2 ~4.35E-10 C C 2 Cm 242 Cm 243 Cs 137 ~1.64E-09 BB 2 ~1.64E-09 C C 2 Cm 244 Cm 243 La 137 La 137 La 138 La 137 La 138 Cf 249 Cf 250 Cf 250 Pm 145 Fm 147 Fm 147 Fm 147 Ff 252 Other a Other a Sm 151 Fu 152 ~1.32E-09 BB 2 ~1.32E-09 C C 2 Total a ~1.72E-09 BB 2 ~1.72E-09 C C 2 Eu 152 ~1.32E-09 BB 2 ~5.59E-09 C C 2 Total a ~4.71E-12 BB 2 ~4.71E-12 C C 2 Eu 155 ~1.08E-10 C C 2 Total a ~4.71E-12 BB 2 ~4.71E-12 C C 2	Sb 126					Pu 242	1715 12	BB 2	4715.12	
I e 12/m -9.89E-12 BB 2 -9.89E-12 CC 2 Am 243 Cs 134 -4.35E-10 BB 2 -4.35E-10 CC 2 Cm 242 Cs 135 -1.64E-09 BB 2 -1.64E-09 CC 2 Cm 243 Cs 137 -1.64E-09 BB 2 -1.64E-09 CC 2 Cm 244 Ba 133 -1.64E-09 CC 2 Cm 248 Cm 248 Ce 144 -1.10 -1.04E-09 CC 2 Cm 248 Cf 249 Pm 145 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 Fm 147 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 Sm 151 -1.10 <td>Te 125m</td> <td></td> <td></td> <td></td> <td></td> <td>Am 242m</td> <td>~4.716-12</td> <td></td> <td>~4.716-12</td> <td>00 2</td>	Te 125m					Am 242m	~4.716-12		~4.716-12	00 2
1129 -9.09E-12 0.00 2 CC 2 Cm 242 Cs 134 -4.35E-10 BB 2 -4.35E-10 CC 2 Cm 242 Cs 135 -1.64E-09 BB 2 -1.64E-09 CC 2 Cm 244 Ba 133 -1.64E-09 BB 2 -1.64E-09 CC 2 Cm 244 La 137 -1.104E-09 BB 2 -1.64E-09 CC 2 Cm 248 Ce 144	Te 127m	0.905 40				Am 243				
Cs 134 AL.35E-10 BB 2 AL.35E-10 CC 2 Cm 243 Cs 135 1.64E-09 BB 2 1.64E-09 CC 2 Cm 244 Ba 133 1.64E-09 BB 2 1.64E-09 CC 2 Cm 244 La 137 1.32E-09 BB 2 1.64E-09 CC 2 Cm 248 Ce 144	1 129 Cs 134	~9.89E-12	BB 2	~9.69E-12		Cm 242				
Cs 137 ~1.64E-09 BB 2 ~1.64E-09 CC 2 Cm 244 Ba 133 La 137 La 138 Cm 244 Cm 245 Cm 246 Ca 144 La 138 Ce 144 La 138 Cf 249 Cf 249 Ce 144 La 138 Cf 250 Cf 250 Cf 251 Cf 251 Pm 145 La 132 Cf 250 Cf 251 Cf 251 Cf 252 Sm 147 La 132E-09 BB 2 ~1.32E-09 CC 2 Other a Cf 252 Sm 151 La 152 ~1.32E-09 BB 2 ~1.32E-09 CC 2 Cd 14a -4.71E-12 BB 2 ~1.72E-09 CC 2 Eu 152 ~1.32E-09 BB 2 ~5.59E-09 CC 2 Total a -4.71E-12 BB 2 ~4.71E-12 CC 2 Eu 155 ~1.08E-10 BB 2 ~1.08E-10 CC 2 Total a -4.4E-06 BB 2 -4.40E-06 CC 2	Cs 135	~4.33L-10	BB 2	~4.35E-10	00 2	Cm 243				
Ba 133 La 137 La 137 La 138 Cm 245 Cm 246 La 138 La 138 Cm 245 Cm 246 Cm 248 Ce 144 La 138 Cf 249 Cf 249 Cf 250 Pm 145 La 138 Cf 250 Cf 251 Cf 251 Pm 147 La 132E-09 BB 2 ~1.32E-09 CC 2 Other a Sm 151 La 152 ~1.32E-09 BB 2 ~1.32E-09 CC 2 Cd 14a -4.71E-12 BB 2 ~1.72E-09 CC 2 Eu 152 ~1.08E-10 BB 2 ~1.08E-10 CC 2 Total a -4.41E-06 BB 2 -4.40E-06 CC 2	Cs 137	~1.64E-09	BB 2	~1.64E-09	CC 2	Cm 244				
La 137 La 138 Ce 144 Pm 145 Pm 147 Sm 147 Sm 151 Eu 152 -1.32E-09 BB 2 -1.32E-09 BB 2 -1.32E-09 BB 2 -1.32E-09 BB 2 -1.32E-09 BB 2 -1.32E-09 BB 2 -1.32E-09 BB 2 -1.32E-09 CC 2 CC 2 Total a -1.72E-09 CC 2 Total a -4.71E-12 BB 2 -4.71E-12 BB 2 -4.71E-12 CC 2	Ba 133					Cm 245				
La 138 Ce 144 Pm 145 Pm 147 Sm 147 Sm 151 Eu 152 -1.32E-09 BB 2 -1.32E-09 BB 2 -1.32E-09 BB 2 -1.32E-09 BB 2 -1.32E-09 BB 2 -1.32E-09 BB 2 -1.32E-09 CC 2 CC 2 Total a -1.72E-09 BB 2 -1.72E-09 CC 2 Total a -4.71E-12 BB 2 -4.71E-12 BB 2 -4.40E-06 CC 2	La 137					Cm 246				
Ce 144 Pm 145 Cf 249 Cf 250 F Cf 250 F	La 138					Cm 248				
Pm 145 Pm 145 Cf 250 Cf 250 Pm 147 Cf 251 Cf 251 Sm 147 Cf 252 Other a Sm 151 Other a Other b/g Eu 152 ~1.32E-09 BB 2 ~1.32E-09 CC 2 Eu 154 ~5.59E-09 BB 2 ~5.59E-09 CC 2 Eu 155 ~1.08E-10 BB 2 ~1.08E-10 CC 2	Ce 144					Cf 249				
Pm 147 Sm 147 Cf 252 Cf 252 Other a Sm 151 Other a Other b/g ~1.72E-09 BB 2 ~1.72E-09 CC 2 Eu 152 ~1.32E-09 BB 2 ~1.32E-09 CC 2 Other b/g ~1.72E-09 BB 2 ~1.72E-09 CC 2 Eu 154 ~5.59E-09 BB 2 ~5.59E-09 CC 2 Total a ~4.71E-12 BB 2 ~4.40E-06 CC 2 Eu 155 ~1.08E-10 BB 2 ~1.08E-10 CC 2 Total b/g ~4.4E-06 BB 2 ~4.40E-06 CC 2	Pm 145					Cf 251				
Sim 147 Other a Other a Sm 151 -1.32E-09 BB 2 ~1.32E-09 CC 2 Other b/g ~1.72E-09 BB 2 ~1.72E-09 CC 2 Eu 152 ~1.32E-09 BB 2 ~5.59E-09 CC 2 Total a ~4.71E-12 BB 2 ~4.71E-12 CC 2 Eu 155 ~1.08E-10 BB 2 ~1.08E-10 CC 2 Total b/g ~4.4E-06 BB 2 ~4.40E-06 CC 2	Pm 147					Cf 252				
Sin 101 ~1.32E-09 BB 2 ~1.32E-09 CC 2 Other b/g ~1.72E-09 BB 2 ~1.72E-09 CC 2 Eu 152 ~5.59E-09 BB 2 ~5.59E-09 CC 2 Total a ~4.71E-12 BB 2 ~4.71E-12 CC 2 Eu 155 ~1.08E-10 BB 2 ~1.08E-10 CC 2 Total b/g ~4.4E-06 BB 2 ~4.40E-06 CC 2	Sm 147 Sm 151					Other a				
Eu 154 ~5.59E-09 BB 2 ~5.59E-09 CC 2 Total a ~4.71E-12 BB 2 ~4.71E-12 CC 2 Eu 155 ~1.08E-10 BB 2 ~1.08E-10 CC 2 Total b/g ~4.4E-06 BB 2 ~4.40E-06 CC 2	511 151 Fu 152	~1.32E-09	BB 2	~1.32E-00	0.0 2	Other b/g	~1.72E-09	BB 2	~1.72E-09	CC 2
Eu 155 ~1.08E-10 BB 2 ~1.08E-10 CC 2 Total b/g ~4.4E-06 BB 2 ~4.40E-06 CC 2	Eu 154	~5.59E-09	BB 2	~5.59E-09	CC 2	Total a	~4.71E-12	BB 2	~4.71E-12	CC 2
	Eu 155	~1.08E-10	BB 2	~1.08E-10	CC 2	Total b/g	~4.4E-06	BB 2	~4.40E-06	CC 2

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3

C a factor of 10 D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

1 Measured activity

Code

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity