WASTE STREAM	7D24	ILW Rea	actor Co	omponents	
SITE	HMNB De	evonport			
SITE OWNER	Ministry c	of Defence			
WASTE CUSTODIAN	Babcock	Internationa	al Group		
WASTE TYPE	ILW				
Is the waste subject to Scottish Policy:	No				
WASTE VOLUMES					
Stocks:	At 1 4 20	22		Reported	
Future arisings -	1 4 2022	- 31 3 2030)	<5.0 m ³	
Total future arisings:	1.4.2022	- 51.5.2000	/	5.0 m ³	
Total waste volume:				8.3 m ³	
Comment on volumes:	Not const course of not yet qu refit/dispo	tant. Depen the mainte uantified (no osal prograr	dent upor nance ope ot includeo mme.	n reactor components that must be re erations. Future Submarine Disposal d). The rate of arising is dependent or	moved during the Program waste arisings n the submarine
Uncertainty factors on	Stock (up	per): x 1	.5	Arisings (upper)	x 2.0
volumes.	Stock (lov	wer): x (0.5	Arisings (lower)	x 0.5
WASTE SOURCE	Activated	reactor cor	nponents.		
PHYSICAL CHARACTERIS	STICS				
General description:	The wast assemblic applied	e consists c es, thermal	of reactor shields ar	components which are neutron activand other irradiated core components.	ited: reactor Waste hierarchy will be
Physical components (%wt):	100% me miscellan	etallic compo leous asser	onents co nblies.	mprising irradiated core components	thermal shields and
Sealed sources:	-				
Bulk density (t/m ³):	~8				
Comment on density:	The wast	e contains r	mostly ste	el items with little interstitial space.	
CHEMICAL COMPOSITION	N				
General description and components (%wt):	Stainless	steel (99.9	%), coppe	er (0.1%).	
Chemical state:	Neutral				
Chemical form of radionuclides:	H-3: High C-14: Pre	ly unlikely t esent in acti	o be preso vated stai	ent in any appreciable quantity. nless steel in small concentration.	
Metals and alloys (%wt):	The items reduced t	s are a varie to either be	ety of diffe disposed	rent sizes and thicknesses. The items of as non-compactable waste or to fit	s will be volume inside 200 litre drums.
			(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel			99.9	316 Stainless Steel.	
Other ferrous me	etals		0		
Iron			Р	In the stainless steel.	
Aluminium					
Beryllium			0		
Cobalt			0		
Copper			0.10		
Lead			0		

Magnox/Magnesium......0

WASTE STREAM

7D24

ILW Reactor Components

(%wt)

	Nickel	Ρ
	Titanium	
	Uranium	0
	Zinc	0
	Zircaloy/Zirconium	0
	Other metals	0
(n/ .		

Organics (%wt):

Total cellulosics	0
Paper, cotton	0
Wood	0
Halogenated plastics	0
Total non-halogenated plastics	0
Condensation polymers	0
Others	0
Organic ion exchange materials	0
Total rubber	0
Halogenated rubber	0
Non-halogenated rubber	0
Hydrocarbons	
Oil or grease	
Fuel	
Asphalt/Tarmac (cont.coal tar)	
Asphalt/Tarmac (no coal tar)	
Bitumen	
Others	
Other organics	0
Other materials (%wt): -	

Inorganic ion exchange materials.. 0 Inorganic sludges and flocs..... 0 Soil..... 0 Brick/Stone/Rubble..... 0 Cementitious material..... 0 Sand..... 0 Glass/Ceramics..... 0 Graphite..... 0 Desiccants/Catalysts..... 0 Asbestos..... 0 Non/low friable..... Moderately friable.....

In the stainless steel.

Type(s) and comment

% of total C14 activity

Type(s) and comment

% of total C14 activity

2022 Inventory

(%wt)

WASTE STREAM 7D24 ILW Reactor Components

Highly friable	
Free aqueous liquids	0
Free non-aqueous liquids	0
Powder/Ash	0

Inorganic anions (%wt): There are no inorganic anions present in the waste.

	(%wt)	Type(s) and comment
Fluoride	0	
Chloride	0	
lodide	0	
Cyanide	0	
Carbonate	0	
Nitrate	0	
Nitrite	0	
Phosphate	0	
Sulphate	0	
Sulphide	0	

Materials of interest for There are no hazardous materials present in the waste. waste acceptance criteria:

	(%wt)	Type(s) and comment
Combustible metals	0	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	0	
Hydrides	0	
Biological etc. materials	0	
Biodegradable materials	0	
Putrescible wastes	0	
Non-putrescible wastes	0	
Corrosive materials	0	
Pyrophoric materials	0	
Generating toxic gases	0	
Reacting with water	0	
Higher activity particles	0	
Soluble solids as bulk chemical compounds	0	

Hazardous substances / There are no heavy metals present in the waste. non hazardous pollutants:

	(%wt)	Type(s) and comment
Acrylamide		
Benzene	0	
Chlorinated solvents		
Formaldehyde		

2022 Inventory

Organometallics		
Phenol	0	
Styrene		
Tri-butyl phosphate	0	
Other organophosphates		
Vinyl chloride	0	
Arsenic	0	
Barium		
Boron	0	
Boron (in Boral)		
Boron (non-Boral)		
Cadmium	0	
Caesium		
Selenium	0	
Chromium	Р	Present in the stainless steel
Molybdenum	Р	Present in the stainless steel
Thallium		
Tin	0	
Vanadium	0	
Mercury compounds		
Others	0	
Electronic Electrical Equipment (EEE	=)	
EEE Type 1		
EEE Type 2		
ЕЕЕ Туре 3		
EEE Type 4		
EEE Type 5		
Complexing agents (%wt): No		
	(%wt)	Type(s) and comment
EDTA	. ,	
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		No organic or inorganic complexing agents are
	_	present.
Total complexing agents	0	
Potential for the waste to contain discrete items: Yes. Potential for characterised at time	discrete ite ne of dispo	ems due to size of material. Items will be sal when approriate.

TREATMENT, PACKAGING AND DISPOSAL

Waste that is currently ILW: The main nuclide of interest is Co-60 which has a 5.27yr half-life. The Co-60 activity of the waste has been assessed from radiological survey information or by the drum monitor. This is to be confirmed following characterisation project due to commence in next 12 months.

WASTE STREAM

7D24 ILW Reactor Components

Planned on-site / off-site On-site / Stream volume Treatment treatment(s): Off site % Low force compaction Supercompaction (HFC) Incineration Solidification Decontamination Metal treatment Size reduction Decay storage On-site 100.0 Recyling / reuse Other / various None Comment on planned Store and decay if determined to be ILW treatments: Disposal Stream **Disposal Routes: Disposal Route** volume % density t/m3 Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known 100.0 ~8.0

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Pouto	Stream volume %			
Disposal Route	2022/23	2023/24	2024/25	
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known				

Opportunities for alternative disposal routing:

Baseline Opportunity Management Route Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
		will be realised	Connactico	

-

Waste Packaging for Disposal: (Not applicable to this waste stream)

WASTE STREAM 7D24 ILW Reactor Components

			Stream volume	Waste loading	Number of	
	Container		%	m³	packages	
	1/3 Height IP-1 ISO					
	2/3 Height IP-2 ISO					
	1/2 Height WAMAC IP-2	ISO				
	1/2 Height IP-2 Disposal/	Re-usable ISO				
	2m box (no shielding)					
	4m box (no shielding)					
	Other					
Othe	er information:	This is to be confirmed following next 12 months.	g characterisation	project due to con	nmence in	
Was	ste Planned for Disposal a	at the LLW Repository: (Not ap	oplicable to this wa	aste stream)		
Container voidage:		<10%.				
		The waste does not meet the LI	_WR's Waste Acc	eptance Criteria (\	WAC).	
		There is no WCH for 7D24. How material will have decayed to Ll	vever after a suita _W and will be dis	ble period of deca posed of under 7D	y storage the 023 waste	

stream.Waste consigned for
disposal to LLWR in
year of generation:No. The waste stream is believed to be in the ILW category (full chacterisation to be
carried out). Assessments have previously estimated the decay storage periods to
LLW levels, however lack of access to all surfaces preclude the ability to determine

to accurately determine classification.

current classification in current form. Full characterisation project to be undertaken

Non-Containerised Waste fo	or In-Vault Grouting: (Not applicable to this waste stream)
Stream volume (%):	-
Waste stream variation:	-
Bounding cuboidal volume:	
Inaccessible voidage:	-
Other information:	-
RADIOACTIVITY	
Source:	Activation products, mainly Co-60 with other beta nuclides Fe-55, Ni-63 and also C-14. The activity arises from neutron activation of the predominant material stainless steel.
Uncertainty:	The total activity assessment is based on radiation survey measurement and then the use of appropriate shielding models and geometries to determine the total Co-60 activity. The activity of other nuclides will for the purpose of this assessment be based on the use of the generic LLW fingerprint. Actual calculations are based on available data from a small number of items currently stored at Devonport that have yet to be accurately characterised. This work is intended to take place within the next 36 months therefore the detail in this RWI is likely to change, possibly significantly. Final characterisation may determine that the items move out of the 7D24 ILW wastream to a LLW stream (7D23). Future arising is based on the possibility of similar un-characterised items being received on site.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	The Co-60 activity of the waste material is assessed from basic survey information from accessible surfaces and then the use of basic shielding calculations. The other nuclides have been assessed by applying the generic radionuclide fingerprint of waste stream 7D23.Specific Activity figures have been derived from current stock data and represent a reasonably consistant waste origin, therefore future arisings, which are expected to remain consistant, can only be estimated based on the same SA estimated figure i.e. the values are specific activity not total activity (which would vary depending on expected volume).
Other information:	Full characterisation of current stocks due to be undertaken in next 12 months. This information will then inform future arisings.

2022 Inventory

WASTE STREAM

7D24 **ILW Reactor Components**

	Mean radioactivity. TBα/m ³					Mean radioactivity. TBg/m ³			
	Waste at	Bands and	Future	Bands and		Waste at	Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code
Н3	~~8.65E-07	DD 2	~~3E-05	DD 2	Gd 153				
Be 10					Ho 163				
C 14	~~8.08E-04	DD 2	~~8.1E-04	DD 2	Ho 166m				
Na 22					Im 170				
AI 26					IM 171				
					Lu 174				
AI 39 Ar 42					Lu 170 Hf 178n				
K 40					Hf 182				
Ca 41					Pt 193				
Mn 53					TI 204				
Mn 54			~~2.1E-04	DD 2	Pb 205				
Fe 55	~~3.59E-05	DD 2	~~6.35E-03	DD 2	Pb 210				
Co 60	~~4.33E-04	DD 2	~~6E-03	DD 2	Bi 208				
Ni 59	~~5.62E-06	DD 2	~~6E-06	DD 2	Bi 210m				
Ni 63	~~1.69E-04	DD 2	~~1.92E-04	DD 2	Po 210				
Zn 65			~~5.4E-05	DD 2	Ra 223				
Se 79					Ra 225				
Kr 81					Ra 226				
Kr 85					Ra 228				
Rb 87					Ac 227				
Sr 90					Th 227				
Zr 93					Th 228				
Nb 91					Th 229				
Nb 92					Th 232				
ND 93m					Th 234				
ND 94					Pa 231				
Tc 97					Pa 233				
Tc 99					U 232				
Ru 106					U 233				
Pd 107					U 234				
Aq 108m					U 235				
Ag 110m					U 236				
Cd 109					U 238				
Cd 113m					Np 237				
Sn 119m					Pu 236				
Sn 121m					Pu 238				
Sn 123					Pu 239				
Sn 126					Pu 240				
Sb 125	~~4.33E-07	DD 2	~~4.8E-05	DD 2	Pu 241				
Sb 126					Fu 242 Am 241				
Te 125m					Am 242m				
10 12/11					Am 243				
Ce 134			1 2E-06	2 חח	Cm 242				
Cs 135			~~1.2L-00	00 2	Cm 243				
Cs 137	~~2 60F-06	DD 2	~~4 2E-06		Cm 244				
Ba 133	2.002 00	55 1		55 2	Cm 245				
La 137					Cm 246				
La 138					Cm 248				
Ce 144					Cf 249				
Pm 145					Cf 250				
Pm 147					Cf 251				
Sm 147					Cf 252				
Sm 151					Other a				
Eu 152	~~1.30E-06	DD 2	~~4.2E-06	DD 2	Other b/g	_		_	
Eu 154					Total a	0		0	
Eu 155					iotai b/g	~~1.40E-03	DD 2	~~1.3/E-02	

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3

C a factor of 10 D a factor of 100 E a factor of 1000

Bands quantify uncertainty in Note: mean radioactivity.

Code

1 Measured activity

Measured activity
Derived activity (best estimate)
Derived activity (upper limit)
Not present
Present but not significant
Likely to be present but not assessed
Present in significant quantities but not determined
Not expected to be present in significant quantity