WASTE STREAM	7D26/C Devonport Condi	tioned Low Leve	el Ion-Exchange Resin
SITE	HMNB Devonport		
SITE OWNER	Ministry of Defence		
WASTE CUSTODIAN	Babcock International Group		
WASTE TYPE	LLW		
Is the waste subject to Scottish Policy:	No		
WASTE VOLUMES		Conditioned	Packaged
Stocks:	At 1.4.2022	~2.8 m ³	17.1 m ³
Future arisings -	1.4.2023 - 31.3.2025 1.4.2025 - 31.3.2028 1.4.2028 - 31.3.2031 1.4.2031 - 31.3.2034	~16.3m ³ ~23.3m ³ ~18.3m ³ ~5.3m ³	97.7 m ³ 139.7 m ³ 109.7 m ³ 31.9 m ³
Total future arisings:		63.2 m ³	379.1 m ³
Total waste volume:		66.0 m ³	396.1 m ³
Comment on volumes:	Submarine refit and maintenance programme is not constant. There are fluctuations dependent upon defence work program. Arisings have been predicted using best available information. Future arisings are based on new resin generation over next 12 years including resins from other DRDL resin wastestreams (7D28, 7D29, 7D34, 7D40 and 7D41) that have undergone conditioning/treatment campaign as part of a MoD driven Resin Disposal Project (RDP) to remove C14 & chelates. Waste will be consigned in RSVs in a raw state for processing and encapsulation into 200 litre drums prior to disposal at NWS. Volumes reported are for the raw volume of the waste. The waste may be used in a cement mixture to fill interstitial space between 200 litre drums of waste within a disposal container (e.g. 1/2 height ISO).		
Uncertainty factors on	Stock (upper): x 1.1	Arising	gs (upper) x 1.3
volumes:	Stock (lower): x 0.9	Arising	gs (lower) x 0.7
WASTE SOURCE	 (i) Effluent treatment plant, (ii) Active cooling plant (not boronated), (iv) C resin from decontamination plants 	ve water treatment pla On board Primary circ	ant, (iii) Alternate core removal uit treatment plant, (v) Conforming
PHYSICAL CHARACTER	ISTICS		
General description:	The waste consists of conditioned	ion exchange resin. T	he resin is nuclear grade

General description:	polystyrene bead based (H-OH resin), consisting of uniform spheroids of approximately 0.6 - 1 mm diameter. There are no large items present. The waste is mixed with a standard cement mixture (see below) before an inactive capping grout is applied to the drum to seal the active surface. The waste resin will have been conditioned at an external treatment facility prior to disposal at NWS.
Physical components (%wt):	Cation and anion exchange resin (24 wt%), OPC/BFS cement (64 wt%), metal drums (12 wt%).
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m³):	1.9
Comment on density:	The density given is the mean density of the conditioned waste and is based on 120 litres of resin encapsulated into each 200 litre drum.

CHEMICAL COMPOSITION

General description and components (%wt):	Polystyrene bead resin (24%), OPC/BFS cement (64%), mild steel (12%).
Chemical state:	Alkali
Chemical form of radionuclides:	H-3: Tritium will be present as HTO. C-14: C-14 is present on resin in a number of different chemical forms, mainly carbonate, organic acids and carbide in magnetite.
Metals and alloys (%wt):	The surface area of the package (drum) (0.58m diameter x 0.87m high) is 2.1 m2. Package thickness is 1.2 mm.

Devonport Conditioned Low Level Ion-Exchange Resin 7D26/C

		(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
	Stainless steel	0		
	Other ferrous metals	12.0	Mild steel	
	Iron			
	Aluminium	0		
	Beryllium	0		
	Cobalt	0		
	Copper	0		
	Lead	0		
	Magnox/Magnesium	0		
	Nickel	0		
	Titanium			
	Uranium	0		
	Zinc	0		
	Zircaloy/Zirconium	0		
	Other metals	0		
Organics (%wt): The waste is made up		p of condit	ioned polystyrene type bead resin.	

	(%wt)
Total cellulosics	0
Paper, cotton	0
Wood	0
Halogenated plastics	0
Total non-halogenated plastics	0
Condensation polymers	0
Others	0
Organic ion exchange materials	24.0
Total rubber	0
Halogenated rubber	0
Non-halogenated rubber	0
Hydrocarbons	
Oil or grease	
Fuel	
Asphalt/Tarmac (cont.coal tar)	
Asphalt/Tarmac (no coal tar)	
Bitumen	
Others	
Other organics	0

-

Other materials (%wt):

Type(s) and comment

% of total C14

activity

Cellulosics	0	
er, cotton	0	
od	0	
enated plastics	0	
non-halogenated plastics	0	
densation polymers	0	
ers	0	
ic ion exchange materials	24.0	100.0
ubber	0	
genated rubber	0	
-halogenated rubber	0	
carbons		
or grease		
halt/Tarmac (cont.coal tar)		
halt/Tarmac (no coal tar)		
men		
ers		
organics	0	

	(%wt)	Type(s) and comment	% of total C14
Inorganic ion exchange materials	0		dounty
Inorganic sludges and flocs	0		
Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	64.0	9:1 BFS/OPC grout matrix	
Sand	0		
Glass/Ceramics	0		
Graphite	0		
Desiccants/Catalysts	0		
Asbestos	0		
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids	0		
Free non-aqueous liquids	0		
Powder/Ash	0		

Inorganic anions (%wt):

There are no free inorganic anions in the waste.

(%wt)

Fluoride	0
Chloride	0
lodide	0
Cyanide	0
Carbonate	0
Nitrate	0
Nitrite	0
Phosphate	0
Sulphate	0
Sulphide	0

Materials of interest for waste acceptance criteria:

Combustible metals	0
Low flash point liquids	0
Explosive materials	0
Phosphorus	0
Hydrides	0
Biological etc. materials	0
Biodegradable materials	0
Putrescible wastes	0
Non-putrescible wastes	0

(%wt) Type(s) and comment

Type(s) and comment

2022 Inventory

WASTE STREAM

7D26/C **Devonport Conditioned Low Level Ion-Exchange Resin**

Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	0
Higher activity particles	0
Soluble solids as bulk chemical compounds	0

Hazardous substances / non hazardous pollutants: Boron may be present in the waste.

Acrylamide	
Benzene	0
Chlorinated solvents	
Formaldehyde	
Organometallics	
Phenol	0
Styrene	
Tri-butyl phosphate	0
Other organophosphates	
Vinyl chloride	0
Arsenic	0
Barium	
Boron	<0.02

Boron (in Boral)	0
Boron (non-Boral)	<0.02
Cadmium	0
Caesium	
Selenium	0
Chromium	0
Molybdenum	0
Thallium	
Tin	0
Vanadium	0
Mercury compounds	
Others	0
Electronic Electrical Equipment (EEE)	
EEE Type 1	
EEE Type 2	
EEE Type 3	
EEE Type 4	

(%wt) Type(s) and comment

> Average ~ 22 mg/l across entire waste stream volume (although not all packages will contain boron. Boron is also encapsulated in cement matrix). Average over boronated inventory only: 65 mg/l. max in any one RSV: 110 mg/l

	EEE Type 5			
Complexing	agents (%wt):	No		
			(%wt)	Type(s) and comment
	EDTA			
	DPTA			
	NTA			
	Polycarboxylic ac	ids		
	Other organic cor	nplexants	<<0.01	Sampling includes analysis for complexing agents. Only resins with results below detection thresholds will be disposed under this wastestream. However, although not expected, it is possible there may be very small trace quantities of undetected organic complexing agentspresent (i.e. << 0.01% w/o).
	Total complexing	agents	<<0.01	
Potential for the waste to No. contain discrete items:				

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):	Treatment	On-si Off s	te / site	Stream volume %	
	Low force compaction				
	Supercompaction (HFC)				
	Incineration				
	Solidification	Off-site		100.0	
	Decontamination				
	Metal treatment				
	Size reduction				
	Decay storage				
	Recyling / reuse				
	Other / various				
	None				
Comment on planned treatments:	The resin is mixed with a standard cement mixture is applied to the drum to seal the active surface.	e before a	n inactive	e capping grout	
Disposal Routes:	Disposal Route			Disposal 6 density t/m3	
	Expected to be consigned to the LLW Repository	/	100.	0 ~1.9	
	Expected to be consigned to a Landfill Facility				
	Expected to be consigned to an On-Site Disposal Facility				
	Expected to be consigned to an Incineration Facility				
	Expected to be consigned to a Metal Treatment Facility				
	Expected to be consigned as Out of Scope				
	Expected to be recycled / reused				
	Disposal route not known				

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

_

WASTE STREAM

7D26/C Devonport Conditioned Low Level Ion-Exchange Resin

Disposal Route	Stream volume %				
	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	_	-	_	-	_

Waste Packaging for Disposal:

Container	Stream volume %	Waste loading m ³	Number of packages
 1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other 	100.0	~3.25	21

Other information:

There is a possibility that the encapsulated resin could be transferred directly into an ISO as part of the cement mixture to fill interstitial spaces between other wastes. This method will only be used if confirmed as appropriate. Waste may be contained in drums (and subsequently placed in half height ISO containers) or directly into a suitable ISO. The volume above is the raw volume of the waste not the conditioned volume. The conditioned volume is approximately 4 times greater than the raw waste volume. It is assumed 13 m3 fill would be put into the TC01/TC02

Waste Planned for Disposal at the LLW Repository:

Container voidage:	<10%.			
Waste Characterisation Form (WCH):	The waste meets the LLWR's Waste Acceptance Criteria (WAC). The waste does not have a current WCH.			
	Current WCH being progressed/reviewed by Tradebe-Inutec. NWS comments being addressed.			
Waste consigned for disposal to LLWR in year of generation:	No. It is possible that the waste will be retained for periods greater than the year of generation. Disposals are undertaken on a campaign basis and will be carried out as soon as it is practicable to do so i.a.w. treatment contractor project plan.			

Non-Containerised Waste for	In-Vault Grouting:	(Not applicable to this waste stream)			
Stream volume (%):	-				
Waste stream variation:	-				
Bounding cuboidal volume:					
Inaccessible voidage:	-				

WASTE STREAM	7D26/C Devonport Conditioned Low Level Ion-Exchange Resin
Other information:	-
RADIOACTIVITY	
Source:	The main source of activity held on the ion exchange resin are activation products from operation of PWR reactor. The main contaminants are cobalt-60, iron-55, carbon-14, nickel-63 and tritium at low levels The waste is generated by the processing of radioactive liquid by submarine coolant treatment systems and shore base facilities.
Uncertainty:	The raw resin within each container is representatively sampled using a full core sampling technique. The resin is then analysed for a range of beta/gamma nuclides e.g. Co-60, Fe-55, Ni-63, C-14, Cl-36 and H-3 & gamma spectroscopy. There are triggers in the sampling and analysis routine that carries out additional analysis for other nuclides should certain key nuclides be detected. Other nuclides detected below limit of detection may have generic resin fingerprint values applied.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	Representative core samples taken, then the sample subjected to a range of chemical analysis and radiochemical techniques. An assessment has identified the major nuclides and also Difficult to Measure (DTM) nuclides that could be present within the waste. The analysis procedure (for major and DTM nuclides) and techniques employed are detailed in the extant WCH.
Other information:	A core sample of the resin within the Resin Storage Vessel is taken and subjected to full radiochemical analysis for beta/gamma and alpha activities. The data is the specific activity of the conditioned waste (in terms of total volume the waste would take-up within the disposal container).

1

WASTE STREAM

7D26/C **Devonport Conditioned Low Level Ion-Exchange Resin**

	Mean radioactivity, TBq/m ³				Mean radioactivity, TBq/m ³				
Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code	Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code
Н 3	1.63E-04	AA 1	~1.63E-04	BB 2	Gd 153				
Be 10					Ho 163				
C 14	2.61E-03	AA 1	~2.61E-03	BB 2	Ho 166m				
Na 22					Tm 170				
AI 26					Tm 171				
CI 36					Lu 174				
Ar 39					LU 176				
Ar 42									
K 40 Ca 41					Pt 193				
Mn 53					TI 204				
Mn 54	5 39E-07	AA 1	~5.39F-07	BB 2	Pb 205				
Fe 55	9.22E-05	AA 1	~9.22E-05	BB 2	Pb 210				
Co 60	2.60E-03	AA 1	~2.60E-03	BB 2	Bi 208				
Ni 59					Bi 210m				
Ni 63	1.63E-04	AA 1	~1.63E-04	BB 2	Po 210				
Zn 65					Ra 223				
Se 79					Ra 225				
Kr 81					Ra 226				
Kr 85					Ra 228				
Rb 87					AC 227				
Sr 90					Th 228				
Zr 93					Th 229				
ND 91 Nb 92					Th 230				
Nb 93m					Th 232				
Nb 94					Th 234				
Mo 93					Pa 231				
Tc 97					Pa 233				
Tc 99					U 232				
Ru 106					U 233				
Pd 107					U 234				
Ag 108m					U 235				
Ag 110m					0 236				
Cd 109					U 238 No 227				
Cu 113m Sp 110m					Pu 236				
Sn 121m					Pu 238				
Sn 123					Pu 239				
Sn 126					Pu 240				
Sb 125	8.96E-07	AA 1	~8.96E-07	BB 2	Pu 241				
Sb 126					Pu 242				
Te 125m					Am 241				
Te 127m					Am 242m				
l 129	1.72E-06	AA 1	1.72E-06	BB 2	Am 243				
Cs 134					Cm 242				
Cs 135	4 005 05	A A 4	4 005 05		Cm 243				
CS 137	1.83E-05	AA 1	~1.83E-05	BB 2	Cm 245				
Da 133					Cm 246				
La 138					Cm 248				
Ce 144					Cf 249				
Pm 145					Cf 250				
Pm 147					Cf 251				
Sm 147					Cf 252				
Sm 151					Other a	3.52E-08	AA 1	~3.52E-08	BB 2
Eu 152					Other b/g				
Eu 154					i otal a	3.52E-08		~3.52E-08	BB 2
Eu 155					i otal b/g	5.65E-03	AA 1	~5.65E-03	BB 2

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3

C a factor of 10 D a factor of 100

E a factor of 1000

Bands quantify uncertainty in Note: mean radioactivity.

Code

1 Measured activity 2 Derived activity (best estimate) 3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined 8 Not expected to be present in significant quantity