WASTE STREAM	7D29	Intermediate Level Waste Resin from Plant Decontamination (MODIX)
SITE	HMNB De	evonport
SITE OWNER	Ministry a	f Defence
WASTE CUSTODIAN	Babcock	International Group
WASTE TYPE	ILW	
Is the waste subject to Scottish Policy:	No	
WASTE VOLUMES		Reported
Stocks:	At 1.4.202	22 6.9m ³
Future arisings -	1.4.2023 1.4.2025 1.4.2028	- 31.3.2025 ~-2.2 m ³ - 31.3.2028 ~-3.1 m ³ - 31.3.2031 ~-1.1 m ³ - 31.3.2034 ~-0.5 m ³
Total future arisings:		-6.9 m ³
Total waste volume:		0 m ³
Comment on volumes:	expected decay into reported 2 wastestre this categ	IX process is no longer being undertaken. Therefore, there are no future arisings for the 7D29 (ILW resin) waste stream. It should noted that this wastestream will o 7D28 and/or be treated/processed into 7D26/C. In the next 10 years the 2022 volume will reduce by 6.923 m^3 via treatment/conditioning to 7D26/C am. TSSBN refitting introduced a different decontamination process. Resins in jory will undergo program of treatment/conditioning at Tradebe-Inutec which will omplexants/chelates and reduce C-14 to LLW levels which will fall into 7D26/C am.
Uncertainty factors on	Stock (up	
volumes:	Stock (lov	ver): x 0.9 Arisings (lower) x 0.7
WASTE SOURCE	used to re	e primary plant (reactor & associated systems) plant decontamination. Resin is emove soluble metal activation products that are generated when the magnetite emoved from the primary plant.
PHYSICAL CHARACTERIS	STICS	
General description:	quaternar cation site approxim quantity o the resin acid (>>0	e contains organic based ion exchange resin where the active groups are ry amines and sulphonic groups. There are equal numbers of active anion and es. The resin is a polystyrene based bead consisting of uniform spheroids of ately 1mm diameter. Resin is always held in a wet state and is 'headed' by a of demineralised water. Due to the chemical decontamination process being used will contain appreciable quantities of chelating agents sodium EDTA and citric .1% by weight). There are no large items present.

	acid (>>0.1% by weight). There are no large items present.
Physical components (%vol):	Ion exchange resin (75%), water (25%).
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	1.1
Comment on density:	The mean density of resin/water mixture is 1.1t/m ³ , i.e. resin is slightly heavier than the overstanding water. This value is for the raw waste only and does not take into consideration the conditioning matrix.

CHEMICAL COMPOSITION

General description and components (%wt):	The waste consists of polystyrene bead mixed cation/anion resin. The main elements removed are metallic activation products. Other anions are also held by the resin. Chelating agents will be present due to nature of the decontamination plant chemistry.
Chemical state:	Acid
Chemical form of radionuclides:	 H-3: Tritium is present as HTO in overstanding water. Not expected as organically bound tritium on resin. Total activity of tritium not significant. C-14: Will be present on the resin primarily in a carbonate form. I-129: Present in trace amounts and adsorbed on the ion exchange resin. Pu: Pu-241 present in trace amounts and adsorbed on the ion exchange resin.
Metals and alloys (%wt):	-

7D29 Intermediate Level Waste Resin from Plant **Decontamination (MODIX)**

	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel	0		
Other ferrous metals	0		
Iron	0		
Aluminium	0		
Beryllium	0		
Cobalt	0		
Copper	0		
Lead	0		
Magnox/Magnesium	0		
Nickel	0		
Titanium	0		
Uranium	0		
Zinc	0		
Zircaloy/Zirconium	0		
Other metals	0	Not applicable.	
 · · · · · · · · · · · · · · · · · · ·			

Organics (%wt):

The waste is a polystyrene based mixed anion and cation resin. Different resins are mixed such that there are same number of active sites on the resin.

Type(s) and comment

% of total C14 activity

	(%wt)
Total cellulosics	0
Paper, cotton	0
Wood	0
Halogenated plastics	0
Total non-halogenated plastics	0
Condensation polymers	0
Others	0
Organic ion exchange materials	75.0
Total rubber	0
Halogenated rubber	0
Non-halogenated rubber	0
Hydrocarbons	0
Oil or grease	
Fuel	
Asphalt/Tarmac (cont.coal tar)	
Asphalt/Tarmac (no coal tar)	
Bitumen	
Others	
Other organics	0
Other materials (%wt): -	

WASTE STREAM

7D29 Intermediate Level Waste Resin from Plant Decontamination (MODIX)

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	0		
Inorganic sludges and flocs	0		
Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	0		
Sand			
Glass/Ceramics	0		
Graphite	0		
Desiccants/Catalysts	0		
Asbestos	0		
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids	25.0		
Free non-aqueous liquids	0		
Powder/Ash	0		

Inorganic anions (%wt):

Organic ion exchange resin used in conjunction with mainly organic main process chemicals in the decontamination process. Minimal free inorganic anions will be present in the waste as stored.

Type(s) and comment

	(%wt)
Fluoride	0
Chloride	0
lodide	0
Cyanide	0
Carbonate	<<0.01
Nitrate	0
Nitrite	0
Phosphate	0
Sulphate	0
Sulphide	0

Materials of interest for There are no hazardous materials present in the waste apart from those already identified (e.g. citric acid and sodium EDTA).

	(%wt)	Type(s) and comment
Combustible metals	0	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	0	
Hydrides	0	
Biological etc. materials	0	
Biodegradable materials	0	
Putrescible wastes	0	

2022 Inventory

WASTE STREAM

7D29 **Intermediate Level Waste Resin from Plant Decontamination (MODIX)**

Non-putrescible wastes	0
Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	0
Higher activity particles	0
Soluble solids as bulk chemical compounds	0

Hazardous substances / non hazardous pollutants: There are no heavy metals in the waste.

Type(s) and comment (%wt) Acrylamide..... Benzene..... Chlorinated solvents..... Formaldehyde..... Organometallics..... Phenol..... Styrene..... Tri-butyl phosphate..... Other organophosphates..... Vinyl chloride..... Arsenic..... Barium..... Boron..... Ρ Boron (in Boral)..... Boron (non-Boral)..... < 0.01 Cadmium..... Caesium..... Selenium..... Chromium..... Molybdenum..... Thallium.....

Tin..... Vanadium..... Mercury compounds..... Others..... Electronic Electrical Equipment (EEE) EEE Type 1..... EEE Type 2..... EEE Type 3..... EEE Type 4..... EEE Type 5.....

< 1.08 mg/l Average boron concentration (1 RSV has 14 mg/l)

7D29 Intermediate Level Waste Resin from Plant Decontamination (MODIX)

Complexing agents (%wt): Yes

	(%wt)	Type(s) and comment
EDTA	~0.90	Weighted average of inventory
DPTA		
NTA		
Polycarboxylic acids	~0.90	Weighted average of inventory
Other organic complexants		Maximum values : Sodium EDTA (<5.98%), citric acid (<4.3%). Content variable dependent upon when resin was used in the decontamination process.
Total complexing agents	<2.0	
or the waste to No.		

Potential for the waste to contain discrete items:

TREATMENT, PACKAGING AND DISPOSAL

Waste that is currently ILW:

tly ILW: The waste will become LLW as a result of radioactive decay into 7D28 and/or treatment/conditioning. Waste may be treated to reduce C-14 and remove chelate content. Treatment & conditioning option is currently- due to be undertaken for all resins containing chelates (and/or high C-14). This is likely to be in the next 3 to 5 years. This is dependent upon initial specific activity and potential treatment/conditioning option that is chosen.

Planned on-site / off-site treatment(s):	Treatment	On-si Off s		Stream volume %
	Low force compaction			
	Supercompaction (HFC)			
	Incineration			
	Solidification	Off	-site	100.0
	Decontamination			
	Metal treatment			
	Size reduction			
	Decay storage	On-site		100.0
	Recyling / reuse			
	Other / various			
	None			
Comment on planned treatments:	Treatment/conditioning process yet to be confirme encapsulated and disposed of to LLWR.	d. The p	roduct will	then be
Disposal Routes:	Disposal Route		Stream volume %	
	Expected to be consigned to the LLW Repository		100.0) ~1.9
	Expected to be consigned to a Landfill Facility			
	Expected to be consigned to an On-Site Disposal	Facility		
	Expected to be consigned to an Incineration Facil	lity		

Expected to be consigned to a Metal Treatment Facility

Expected to be consigned as Out of Scope

Expected to be recycled / reused

Disposal route not known
Classification codes for waste expected -

to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

7D29 Intermediate Level Waste Resin from Plant Decontamination (MODIX)

Disposal Route	Stream volume %			
	2022/23	2023/24	2024/25	
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known				

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	_	-	_	-	_

Waste Packaging for Disposal:

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO			
2/3 Height IP-2 ISO			
1/2 Height WAMAC IP-2 ISO			
1/2 Height IP-2 Disposal/Re-usable ISO			
2m box (no shielding)			
4m box (no shielding)			
Other			

Other information:

Encapsulated resin into steel drums or potentially direct into HHISO for disposal to NWS. Alternative may be considered depending on the conditioning/treatment option used.

Waste Planned for Disposal at the LLW Repository:

Container voidage:	<10%.
	The waste does not meet the LLWR's Waste Acceptance Criteria (WAC).
	Treatment/conditioning project currently underway which has determined the most appropriate way to manage the waste, e.g. C-14 removal and chelate destruction.
Waste consigned for disposal to LLWR in year of generation:	No. Waste will have to be sampled prior to being sentenced for disposal. The waste is ILW and could be held in storage for up to 30 years to allow for decay to LLW levels. Treatment /conditioning of this waste form, together with other relevant waste forms is expected to enable disposal within the next 3 to 5 yrs i.e. before 2027.

Non-Containerised Waste for	or In-Vault Grouting:	(Not applicable to this waste stream)
Stream volume (%):	-	
Waste stream variation:	-	
Bounding cuboidal volume:		
Inaccessible voidage:	-	
Other information:	-	

7D29 Intermediate Level Waste Resin from Plant Decontamination (MODIX)

RADIOACTIVITY

Source:	The main nuclides are activation products (beta/gamma) that arise from the operation of the submarine pressurised water reactor. The decontamination process used strips the magnetite layer from the internals of the primary circuit bringing the activation products into solution. Ion exchange resin is used to remove soluble anion/cations. The main nuclides in terms of activity are Co-60, Fe-55, C-14, Ni-63, Ag-110m, Mn-54 and Sb-125 Resin also contains organic chelating agents.
Uncertainty:	Activity for the major nuclides is determined by sampling and an exhaustive radiochemical analysis. The total specific activity should therefore be within ±50%.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	Core samples are taken from each resin container. The sample is prepared and analysed to determine the major nuclides by gamma spectroscopy and other selective chemical techniques for other beta/gamma nuclides. Gross alpha and gross beta measurements are also taken. If certain trigger nuclides (e.g. Cs-137) are detected then additional analysis will be undertaken for other nuclides (e.g. I-129).
Other information:	A core sample of the resin is taken from the RSV. This sample is subject to full radiochemical analysis for alpha and beta/gamma activities. The chelate concentration is also determined. The H-3 within the overstanding water is also assessed along with pH, conductivity and chloride analysis.

WASTE STREAM

7D29 Intermediate Level Waste Resin from Plant **Decontamination (MODIX)**

	N	lean radioac	tivity, TBq/m ³				Mean radioa	ctivity, TBq/m ³	
Nuclide	Waste at	Bands and	Future	Bands and	Nuclide	Waste at	Bands and	Future	Bands and
	1.4.2022	Code	arisings	Code		1.4.2022	Code	arisings	Code
H 3	1.29E-03	AA 1	1.29E-03	AA 1	Gd 153				
Be 10 C 14	0.525.02	A A 1	0.525.02	A A 1	Ho 163 Ho 166m				
Na 22	9.53E-03	AA 1	9.53E-03	AA 1	Tm 170				
Al 26					Tm 170 Tm 171				
CI 36	3.27E-05	AA 1	3.27E-05	AA 1	Lu 174				
Ar 39	0.27E 00		0.27 - 00		Lu 176				
Ar 42					Hf 178n				
K 40					Hf 182				
Ca 41					Pt 193				
Mn 53					TI 204				
Mn 54	2.85E-09	AA 1	2.85E-09	AA 1	Pb 205				
Fe 55	9.19E-04	AA 1	9.19E-04	AA 1	Pb 210				
Co 60	1.54E-02	AA 1	1.54E-02	AA 1	Bi 208				
Ni 59					Bi 210m				
Ni 63	3.08E-03	AA 1	3.08E-03	AA 1	Po 210				
Zn 65	2.16E-13	AA 1	2.16E-13	AA 1	Ra 223				
Se 79					Ra 225				
Kr 81					Ra 226				
Kr 85					Ra 228				
Rb 87					Ac 227				
Sr 90					Th 227				
Zr 93					Th 228				
Nb 91					Th 229 Th 230				
Nb 92					Th 230				
Nb 93m Nb 94					Th 234				
Mo 94 Mo 93					Pa 231				
Tc 97					Pa 233				
Tc 99					U 232				
Ru 106					U 233				
Pd 107					U 234				
Ag 108m	4.27E-07	AA	4.27E-07	AA	U 235				
Ag 110m	2.13E-13	AA 1	2.13E-13	AA 1	U 236				
Cd 109					U 238				
Cd 113m					Np 237				
Sn 119m					Pu 236				
Sn 121m					Pu 238				
Sn 123					Pu 239				
Sn 126					Pu 240				
Sb 125	2.26E-06	AA 1	2.26E-06	AA 1	Pu 241 Pu 242	6.30E-05	AA 1	6.30E-05	AA 1
Sb 126					Pu 242 Am 241	2.28E-04	AA 1	2.28E-04	AA 1
Te 125m					Am 241 Am 242m	2.201-04		2.20∟-04	
Te 127m I 129	1.075.06	AA 1	1.07E-06	AA 1	Am 24211 Am 243				
Cs 134	1.07E-06	AA I	1.07E-00		Cm 242				
Cs 134 Cs 135					Cm 243				
Cs 135 Cs 137	8.58E-05	AA 1	8.58E-05	AA 1	Cm 244				
Ba 133	5.00L-00		0.002-00		Cm 245				
La 137					Cm 246				
La 138					Cm 248				
Ce 144					Cf 249				
Pm 145					Cf 250				
Pm 147					Cf 251				
Sm 147					Cf 252				
Sm 151					Other a	~1.25E-05	AA 1	~1.25E-05	AA 1
Eu 152					Other b/g	3.09E-10	AA 1	3.09E-10	AA 1
Eu 154					Total a	~2.28E-04	AA 1	~2.28E-04	AA 1
Eu 155					Total b/g	3.04E-02	AA 1	3.04E-02	AA 1

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3

C a factor of 10

D a factor of 100 E a factor of 1000

Bands quantify uncertainty in Note: mean radioactivity.

Code

Measured activity
 Derived activity (best estimate)
 Derived activity (upper limit)
 A Not present
 S Present but not significant
 C likely to be precent but not asse

6 Likely to be present but not assessed
7 Present in significant quantities but not determined
8 Not expected to be present in significant quantity