SITE	HMNB Devonport			
SITE OWNER	Ministry of Defence			
WASTE CUSTODIAN	Babcock International Group			
WASTE TYPE	LLW			
Is the waste subject to Scottish Policy:	No			
WASTE VOLUMES		Conditioned	Packaged	
Stocks:	At 1.4.2022	0.5 m ³	0.6m ³	
Future arisings -	1.4.2022 - 31.3.2030	~16.0 m ³	18.9m ³	
Total future arisings:		16.0 m ³	18.9m ³	
Total waste volume:		16.5 m³	19.5 m³	
Comment on volumes:	The volumes are conditioned volumes. Generation of waste is programme driven so may vary significantly.			
Uncertainty factors on	Stock (upper): x 1.5		ngs (upper) x 2.0	
volumes:	Stock (lower): x 0.5	Arisi	ngs (lower) x 0.5	
WASTE SOURCE	The waste arises from the operation of the radioactive effluent treatment facilities. Particulate material can settle in tanks forming the sludge which is removed. Similar sludges are also removed from portable effluent tanks during periodic maintenance operations.			
PHYSICAL CHARACTERISTICS				
General description: Conditioning method is encapsulation. The waste is a slurry of some inactive materials such as dust & rust particles. The active component is traces of Co-60 and other activation products. The waste is encapsulated in BFS/OPC (9:1 blend) within a 200 I mild steel drum. An inactive grout is applied to the drum to seal the active surface. There are no large items in this waste. Waste is currently stored awaiting conditioning before consignment to the NWS.				
Physical components (%wt):	The composition of the encapsulated product is 23% metal (this includes the drums and also an allowance for the primary disposal container), 67.9% encapsulated sludge, 9% soft organics and 0.1% plastics / rubber.			
Sealed sources:	The waste does not contain sealed	sources.		
Bulk density (t/m ³):	0.65			
Comment on density:	The density is that of the raw sludg	e in a mild steel 200	DL drum.	

CHEMICAL COMPOSITION

General description and components (%wt):	Tank cleaning sludge. The solid content of the raw sludge is mainly inactive inorganic materials such as rust particles, concrete and sand particles, non-asbestos lagging dust, together with a minor component of organic debris particles. The active component of the slurry is traces of crud which include Co-60, Fe-55 and Ni-63. The composition of the encapsulated product is 23% metal (this includes the drums and also an allowance for the primary disposal container), 67.9% encapsulated sludge, 9% soft organics and 0.1% plastics / rubber.
Chemical state:	Alkali
Chemical form of radionuclides:	H-3: HTO will be present in the overstanding liquid. This will be assessed when the waste is sampled. C-14: C-14 will be present in the waste. The exact quantity will be determined by representative sampling.
Metals and alloys (%wt):	No sheet metal present. Only metal present in the conditioned waste product will be the 200 I drum which acts as the primary containment.

7D30/C Devonport Conditioned Sludge (for Disposal to NWS)

% of total C14 activity

	(%wt)	Type(s) / Grade(s) with proportions
Stainless steel	0	
Other ferrous metals	23.0	Mild steel drum.
Iron	0	
Aluminium	0	
Beryllium	0	
Cobalt	0	
Copper	0	
Lead	0	
Magnox/Magnesium	0	
Nickel	0	
Titanium	0	
Uranium	0	
Zinc	0	
Zircaloy/Zirconium	0	
Other metals	0	

Organics (%wt):

Possibility that there may be a small amount of polythene/paper in the waste. This will also be declared prior to disposal if found to be the case.

	(%wt)	Type(s) and comment	% of total C14 activity
Total cellulosics	~9.0		county
Paper, cotton	~9.0		
Wood			
Halogenated plastics			
Total non-halogenated plastics	~0.05		
Condensation polymers			
Others			
Organic ion exchange materials	0		
Total rubber	~0.05		
Halogenated rubber			
Non-halogenated rubber			
Hydrocarbons			
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Others			
Other organics	0		
Other materials (%wt): -			

(%wt)

Type(s) and comment

% of total C14 activity

0 Inorganic ion exchange materials.. Inorganic sludges and flocs..... 0 0 Soil..... Brick/Stone/Rubble..... 0 Cementitious material..... Sand..... 0 Glass/Ceramics..... 0 Graphite..... 0 Desiccants/Catalysts..... Asbestos..... 0 Non/low friable..... Moderately friable..... Highly friable..... Free aqueous liquids..... 0 Free non-aqueous liquids..... 0 Powder/Ash..... 0

 aterials..
 0

 s......
 0

 0

 0

 68.0

 0

 0

 0

 0

 0

 0

 0

 0

Inorganic anions (%wt):

Trace inorganic anions may be present. Silicates will be present.

(%wt)

Type(s) and comment

Fluoride	0
Chloride	0
lodide	0
Cyanide	0
Carbonate	0
Nitrate	0
Nitrite	0
Phosphate	0
Sulphate	TR
Sulphide	0

Materials of interest for There are no hazardous materials present in the waste. waste acceptance criteria:

	(%wt)	Type(s) and comment
Combustible metals	0	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	0	
Hydrides	0	
Biological etc. materials	0	
Biodegradable materials	0	
Putrescible wastes	0	
Non-putrescible wastes	0	

2022 Inventory

WASTE STREAM

Devonport Conditioned Sludge (for Disposal to NWS) 7D30/C

Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	0
Higher activity particles	0
Soluble solids as bulk chemical compounds	0

Hazardous substances /

No toxic heavy metals will be present in the waste.

non hazardous pollutants:

	(%wt)	Type(s) and comment
Acrylamide		
Benzene	0	
Chlorinated solvents		
Formaldehyde		
Organometallics		
Phenol	0	
Styrene		
Tri-butyl phosphate	0	
Other organophosphates		
Vinyl chloride	0	
Arsenic	0	
Barium		
Boron	Р	Estimated to be less than 18mg/kg
Boron (in Boral)		
Boron (non-Boral)	<0.01	
Cadmium	0	
Caesium		
Selenium	0	
Chromium	0	
Molybdenum	0	
Thallium		
Tin	0	
Vanadium	0	
Mercury compounds		
Others	0	
Electronic Electrical Equipment (EEE)		
EEE Type 1		
EEE Type 2		
EEE Type 3		
EEE Type 4		
EEE Type 5		

(%wt) Type(s) and comment No

Complexing agents (%wt):

	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		Complexing agents are not expected in this wastestream.
Total complexing agents	0	
or the waste to No.		

Potential for the waste to contain discrete items:

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):	Treatment	On-site / Off site	Stream volume %
	Low force compaction		
	Supercompaction (HFC)		
	Incineration		
	Solidification	Off-site	100.0
	Decontamination		
	Metal treatment		
	Size reduction		
	Decay storage		
	Recyling / reuse		
	Other / various		
	None		

Comment on planned treatments:

Disposal Routes:

There is a possibility that some lower activity sludges may undergo disposal via incineration as part of waste diversion option.

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused	100.0	~0.65
Disposal route not known		

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	-	-	-	-	-

-

Waste Packaging for Disposal:

Container		Stream volume %	Waste loading m ³	Number of packages		
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 1/2 Height IP-2 Disposal 2m box (no shielding) 4m box (no shielding) Other		100.0	~16.48	1		
Other information:	Drums containing encapsulated container for final grouting at N increase approximately by a fac Disposal/Re-usable ISO (TC01/ loading therefore it will only con	WS. When conditi ctor of 4. It is assu /TC02) will approx	oned the volume on med each 1/2 Hei imately have a 13	of waste will ght IP-2		
Waste Planned for Disposal	at the LLW Repository:					
Container voidage: <20%.						
Waste Characterisation Form (WCH):	The waste meets the LLWR's Waste Acceptance Criteria (WAC). The waste does not have a current WCH. Inventory information is consistent with the current WCH. Current WCH under review by Tradebe Inutec. Awaiting comments from NWS					
Waste consigned for disposal to LLWR in vear of generation:No. It is possible that the waste will be held until sufficient is available to send a 'full' load. Waste will be forwarded as soon as is reasonably practicable.						
Non-Containerised Waste fo	r In-Vault Grouting: (Not applie	cable to this waste	e stream)			
Stream volume (%):	-					
Waste stream variation:	-					
Bounding cuboidal volume:						
Inaccessible voidage:	-					
Other information:	-					
RADIOACTIVITY						
Source:		ated with cobalt-60, iron-55, carbon-14, nickel-63 and other Activity is from activation products that have collected in the slue rocessing operations.				
Uncertainty:		re an estimate of the activity of current stocks only. All was prior to conditioning. It is expected that the waste will be				
Definition of total alpha and total beta/gamma:	Where totals are shown on the listed alpha or beta/gamma emi					
Measurement of radioactivities:	Representative sampling of dru of other radionuclides. Volume	aste is determined by the use of segmented gamma drum monit g of drum contents and radiochemical analysis determines activit olume of waste in drum is also assessed as part of the sampling erprint is used for nuclides that are less than limit of detection of eing used.				

Other information:

-

WASTE STREAM

Devonport Conditioned Sludge (for Disposal to NWS) 7D30/C

	Ν	/lean radioac	tivity, TBq/m ³			Mean radioactivity, TBq/m ³			
Nuclide	Waste at	Bands and	Future	Bands and	Nuclide		Bands and	Future	Bands and
H 3	1.4.2022 ~4.22E-05	Code BB 2	arisings	Code CC 2	Gd 153	1.4.2022	Code	arisings	Code
н з Ве 10	~4.22E-05	DD 2	~4.22E-05	00 2	Ho 163				
C 14	~2.77E-03	BB 2	~2.77E-03	CC 2	Ho 166m				
Na 22	~5.50E-09	BB 2	~5.50E-09	CC 2	Tm 170				
AI 26	0.002 00		0.002 00	00 2	Tm 171				
CI 36	~1.54E-08	BB 2	~1.54E-08	CC 2	Lu 174				
Ar 39					Lu 176				
Ar 42					Hf 178n				
K 40					Hf 182				
Ca 41					Pt 193				
Mn 53					TI 204				
Mn 54	~1.25E-05	BB 2	~1.25E-05	CC 2	Pb 205				
Fe 55	~2.44E-03	BB 2	~2.44E-03	CC 2	Pb 210				
Co 60	~1.34E-03	BB 2	~1.34E-03	CC 2	Bi 208 Bi 210m				
Ni 59	~6.82E-07	BB 2 BB 2	~6.82E-07	CC 2	Po 210				
Ni 63 7n 65	~1.71E-04	BB 2 BB 2	~1.71E-04	CC 2	Ra 223				
Zn 65 Se 79	~1.28E-05	DD 2	~1.28E-05	CC 2	Ra 225				
Kr 81					Ra 226				
Kr 85					Ra 228				
Rb 87					Ac 227				
Sr 90	~9.28E-09	BB 2	~9.28E-09	CC 2	Th 227				
Zr 93					Th 228				
Nb 91					Th 229				
Nb 92					Th 230				
Nb 93m					Th 232				
Nb 94					Th 234				
Mo 93	~1.02E-08	BB 2	~1.02E-08	CC 2	Pa 231				
Tc 97					Pa 233 U 232				
Tc 99	~4.95E-10	BB 2	~4.95E-10	CC 2	U 232				
Ru 106 Pd 107					U 234				
Ag 107	~3.75E-06	BB 2	~3.75E-06	CC 2	U 235				
Ag 100m Ag 110m	~2.08E-06	BB 2 BB 2	~2.08E-06	CC 2	U 236				
Cd 109	~2.00L-00		~2.00E-00	00 2	U 238				
Cd 113m					Np 237				
Sn 119m					Pu 236				
Sn 121m					Pu 238				
Sn 123					Pu 239				
Sn 126					Pu 240				
Sb 125	~1.59E-05	BB 2	~1.59E-05	CC 2	Pu 241				
Sb 126					Pu 242 Am 241	~3.76E-06	BB 2	~3.76E-06	CC 2
Te 125m					Am 241 Am 242m	~3.70⊑-00		~3.70L-00	00 2
Te 127m	0 705 00		0.705.00		Am 243				
l 129	~2.73E-08	BB 2	~2.73E-08	CC 2	Cm 242				
Cs 134	~2.68E-07	BB 2	~2.68E-07	CC 2	Cm 243				
Cs 135 Cs 137	~6.54E-06	BB 2	~6.54E-06	CC 2	Cm 244				
Ba 133	~0.04L-00		~0.04L-00	00 2	Cm 245				
La 137					Cm 246				
La 138					Cm 248				
Ce 144					Cf 249				
Pm 145					Cf 250				
Pm 147					Cf 251				
Sm 147					Cf 252				
Sm 151					Other a	1.045.00		1 015 00	
Eu 152	~3.58E-07	BB 2	~3.58E-07	CC 2	Other b/g Total a	~1.01E-06	BB 2 BB 2	~1.01E-06	CC 2 BB 2
Eu 154	~1.52E-05	BB 2	~1.52E-05	CC 2	Total a	~3.76E-06 ~6.84E-03	BB 2 BB 2	~3.76E-06 ~6.84E-03	CC 2
Eu 155	~2.89E-07	BB 2	~2.89E-07	CC 2	i utai u/y	~0.04E-03	00 Z	~0.04E=03	00 2

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3 C a factor of 10

D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity 2 Derived activity (best estimate) 3 Derived activity (upper limit) 4 Not present 5 Present but not algoitigent

5 Present but not significant 6 Likely to be present but not assessed 7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity