WASTE STREAM	7D41	ILW	Sub	omarii	ne Ion Exchange	e Resin		
SITE	HMNB De	evonpo	rt					
SITE OWNER	Ministry o	f Defer	nce					
WASTE CUSTODIAN	Babcock	Interna	tiona	l Group)			
WASTE TYPE	ILW							
Is the waste subject to Scottish Policy:	No							
WASTE VOLUMES					Reported			
Stocks:	At 1.4.202	22			1.4 m ³	1		
Future arisings -	1.4.2023 1.4.2025 1.4.2028 1.4.2028	- 31.3.2 - 31.3.2 - 31.3.2 - 31.3.2	2025. 2028. 2031. 2034.		~0.6 m ³ << 0.1 m ³ ~0.6 m ³ ~0.5 m ³	5 5 5		
Total future arisings:					1.7 m ³	1		
Total waste volume:					3.1 m ³	\$		
Comment on volumes:	Generatic variable. ' Waste dis campaign which is e a balance will be rec above is t Vessel (R	on rate Curren posal o as par expecte of new luced a he tota SV)	is de t Sto due t t of a d to vly ge and c and c	pender cks' de o comr a MoD o reduce enerate onverte ume of	at upon the submarin clared are for waste nence c. 2024 which driven Resin Disposa waste to LLW. Repo d waste versus a pro ed into conditioned w the ion exchange res	e refit/maintenand stored in raw form will follow a cond al Project (RDP) to orted volumes in 'fr ogram of work in w vastestream: 7D26 sin and water with	ce p itio itio re utu /hic 5/C.	olan, which is waiting treatment. ning/treatment move C14 & chelate re arisings' represen ch this wastestream . The volume quoted he Resin Storage
Uncertainty factors on volumes:	Stock (up Stock (lov	per): ver):	x 1 x 0	.1 .9		Arisings (upper) Arisings (lower)))	< 1.5 × 0.5
WASTE SOURCE	During operation of the submarine reactor system primary coolant is passed through an onboard ion exchange resin which removes soluble activation products and also acts as a very coarse filter.							
PHYSICAL CHARACTERIS	STICS							
General description:	Resin is h is nuclear approxima mixed with applied to until it has and remo	eld wit grade ately 0. h a star the dr s decay ve/redu	hin a polys 6 - 1 ndarc um to ved to uce C	Resin styrene mm di d ceme o seal t o LLW 2-14 an	Storage Vessel (RS) bead based (H-OH ameter. There are no nt mixture (see below he active surface. Th evels and/or has bee d is able to be mana	 V). Resin is held ir resin), consisting b large items preserved by before an inaction with the waste will be strengther treated/condition ged in accordance 	n a of u ent ive ore one e w	raw state. The resin uniform spheroids of . The waste will be capping grout is d in the raw state d to remove chelates ith 7D26/C.
Physical components (%wt):	Resin (75	%), wa	ter (2	25%).				
Sealed sources:	The waste	e does	not c	ontain	sealed sources.			
Bulk density (t/m ³):	~1.1							
Comment on density:	Density is by an amo	for rav	v res wate	in i.e u er.	nconditioned. Raw w	aste is organic ior	n ex	kchange resin heade
CHEMICAL COMPOSITION	N							
General description and components (%wt):	Organic id	on exch	nange	e resin	and water.			
Chemical state:	Alkali							
Chemical form of	H-3: HTO	. Possi	ble m	ninor co	ontribution is as OBT			

1

radionuclides: C-14: C-14 is present on resin in a number of different chemical forms, mainly carbonate, organic acids and carbide in magnetite.

Metals and alloys (%wt):

-

		(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
	Stainless steel	0		
	Other ferrous metals	0		
	Iron	0		
	Aluminium	0		
	Beryllium	0		
	Cobalt	0		
	Copper	0		
	Lead	0		
	Magnox/Magnesium	0		
	Nickel	0		
	Titanium			
	Uranium	0		
	Zinc	0		
	Zircaloy/Zirconium	0		
	Other metals	0	Not applicable.	
: (%)	vt): The resin is a comme	ercial high	nuclear grade anion/cation mixed resin.	

Organics (% swt):

g g

(%wt)

Type(s) and comment

Total cellulosics	0
Paper, cotton	0
Wood	0
Halogenated plastics	0
Total non-halogenated plastics	0
Condensation polymers	0
Others	0
Organic ion exchange materials	75.0
Total rubber	0
Halogenated rubber	0
Non-halogenated rubber	0
Hydrocarbons	0
Oil or grease	
Fuel	
Asphalt/Tarmac (cont.coal tar)	
Asphalt/Tarmac (no coal tar)	
Bitumen	
Others	
Other organics	0
ials (%wt): -	

100.0

% of total C14

activity

Other materials (%wt):

Type(s) and comment

(%wt)

Inorganic ion exchange materials	0
Inorganic sludges and flocs	0
Soil	0
Brick/Stone/Rubble	0
Cementitious material	0
Sand	0
Glass/Ceramics	0
Graphite	0
Desiccants/Catalysts	0
Asbestos	0
Non/low friable	
Moderately friable	
Highly friable	
Free aqueous liquids	25.0
Free non-aqueous liquids	0
Powder/Ash	0

Inorganic anions (%wt):

There should not be a significant amount of inorganic anions within the resin/water mixture.

Type(s) and comment

% of total C14

activity

Fluoride	0
Chloride	0
lodide	0
Cyanide	0
Carbonate	0
Nitrate	0
Nitrite	0
Phosphate	0
Sulphate	0
Sulphide	0

Materials of interest for waste acceptance criteria: Raw waste is headed by an amount of water. There should be no other hazardous materials within the waste.

(%wt)

	(%wt)	Type(s)
Combustible metals	0	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	0	
Hydrides	0	
Biological etc. materials	0	
Biodegradable materials	0	
Putrescible wastes	0	
Non-putrescible wastes	0	

vt) Type(s) and comment

WASTE STREAM

7D41 ILW Submarine Ion Exchange Resin

Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	0
Higher activity particles	0
Soluble solids as bulk chemical compounds	0

-

Hazardous substances / non hazardous pollutants:

Acrylamide	
Benzene	0
Chlorinated solvents	
Formaldehyde	
Organometallics	
Phenol	0
Styrene	
Tri-butyl phosphate	0
Other organophosphates	
Vinyl chloride	0
Arsenic	0
Barium	
Boron	Ρ

Boron (in Boral)	0
Boron (non-Boral)	0
Cadmium	0
Caesium	
Selenium	0
Chromium	0
Molybdenum	0
Thallium	
Tin	0
Vanadium	0
Mercury compounds	
Others	0
Electronic Electrical Equipment (EEE)	
EEE Type 1	
EEE Type 2	
EEE Type 3	
ЕЕЕ Туре 4	

(%wt) Type(s) and comment

Not present in current inventory but may contain Boron in future holdings dependant on submarine processes i.e potential for on-board boronation of primary effluent. This would equate to an average boron concentration comparable to 7D26/C waste stream (~ 22 mg/l)

2022 Inventory

EEE Type 5		
Complexing agents (%wt): No		
	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants	<<0.01	Sampling includes analysis for complexing agents. Only resins with results below detection thresholds will be disposed under this wastestream. However, although not expected, it is possible there may be very small trace quantities of undetected organic complexing agents present (i.e. << 0.01 %wt).
Total complexing agents	<<0.01	
Potential for the waste to . No contain discrete items:		

TREATMENT, PACKAGING AND DISPOSAL

Waste that is currently ILW:

. . . .

The waste will decay to/be conditioned to LLW limits. Major nuclide is Co-60. C-14 is also a major contributor to the total waste stream total. Batched treatment/conditioning (Tradebe-Inutec: Modulox) as part of the RDP will remove/reduce the C-14 along with the chelate content. This is dependent upon the specific activity of the waste at the time of generation. Treatment/conditioning is also expected to significantly reduce C-14 activity.

Planned on-site / off-site treatment(s):	Treatment	On-site / Off site	Stream volume %
	Low force compaction		
	Supercompaction (HFC)		
	Incineration		
	Solidification	On-site	100.0
	Decontamination		
	Metal treatment		
	Size reduction		
	Decay storage	On-site	100.0
	Recyling / reuse		
	Other / various		
	None		

Comment on planned treatments:

It is planned that waste will be treated/conditioned to reduce the C-14 before the

Disposal Routes:

resulting product will be encapsulated for disposal.

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository	100.0	~1.9
Expected to be consigned to a Landfill Facility		
Expected to be consigned to an On-Site Disposal Facility		
Expected to be consigned to an Incineration Facility		
Expected to be consigned to a Metal Treatment Facility		
Expected to be consigned as Out of Scope		
Expected to be recycled / reused		
Disposal route not known		

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

WASTE STREAM

7D41 ILW Submarine Ion Exchange Resin

Disposal Poute	Stream volume %				
	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	_	-	_	-	_

Waste Packaging for Disposal:

Container	Stream volume	Waste loading	Number of	
	%	m ³	packages	
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other	100.0	3.25	< 1	

Other information:

Encapsulated resin direct into HHISO. If not, within standard 200 litre drums loaded into HHISO containers for disposal to LLWR. Alternative may be considered depending on the conditioning/treatment option used.

Waste Planned for Disposal at the LLW Repository:

Container voidage:	<10%.				
	The waste does not meet the LLWR's Waste Acceptance Criteria (WAC).				
	ILW				
Waste consigned for disposal to LLWR in year of generation:	No. The waste is an ILW stream. Held in store to allow for decay storage. There are also significant C-14 concentrations, which inhibits the resin conditioning for disposal. Resins can be stored for periods of up to 30 years before being acceptable for preconditioning to remove the C-14 content. Treatment/conditioning of waste form is planned to take place within the next 2-5 yrs i.e. pre 2027.				

Non-Containerised Waste for	In-Vault Grouting:	(Not applicable to this waste stream)				
Stream volume (%):	-					
Waste stream variation:	-					
Bounding cuboidal volume:						
Inaccessible voidage:	-					
Other information:	-					
RADIOACTIVITY						

WASTE STREAM	7D41 ILW Submarine Ion Exchange Resin
Source:	The main source of activity held on the ion exchange resin are activation products from operation of PWR reactor. The main contaminants are cobalt-60, iron-55, carbon-14, nickel-63 and tritium. The waste is generated by the processing of radioactive liquid by submarine coolant treatment systems.
Uncertainty:	The raw resin within each container is representatively sampled using a full core sampling technique. The resin is then analysed for a range of beta/gamma nuclides e.g. Co-60, Fe-55, Ni-63, C-14, Cl-36 and H-3 & gamma spectroscopy. There are triggers in the sampling and analysis routine that carries out additional analysis for other nuclides should certain key nuclides be detected. Other nuclides detected below limit of detection may have generic resin fingerprint values applied. Errors associated with the measurements are within the tolerances of a UKAS accredited laboratory.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	Core samples are taken from each resin container. The sample is prepared and analysed to determine the major nuclides by gamma spectroscopy and other selective chemical techniques for other beta/gamma nuclides. Gross alpha and gross beta measurements are also taken. If certain trigger nuclides (e.g. Cs-137) are detected then additional analysis will be undertaken for other nuclides (e.g. I-129). Specific Activity figures have been derived from current stock data and represent a reasonably consistent waste origin, therefore future arisings, which are expected to remain consistent, can only be estimated based on the same SA estimated figure i.e. the values are specific activity not total activity (which would vary depending on expected volume).
Other information:	-

WASTE STREAM

7D41 ILW Submarine Ion Exchange Resin

	Mean radioactivity. TBɑ/m³				Mean radioactivity. TBɑ/m³				
	Waste at	Bands and	Future	Bands and		Waste at	Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code
H 3	8.15E-03	AA 1	~8.15E-03	CC 2	Gd 153				
Be 10					Ho 163				
C 14	4.87E-02	AA 1	~4.87E-02	CC 2	Ho 166m				
Na 22					Tm 170				
AI 26					Im 1/1				
CI 36					Lu 174				
Ar 39									
AI 42									
K 40					Dt 103				
Mn 53					TI 204				
Mn 54	1 55E-08	ΔΔ 1	- 1 55E-08	CC^{2}	Ph 205				
Fe 55	4.33E-00		~4.00E-00		Ph 210				
Co 60	1.41E-03		~1.41E-03		Bi 208				
Ni 59	1.412 00		1.412 00	00 2	Bi 210m				
Ni 63	2 06F-03	AA 1	~2 06F-03	CC 2	Po 210				
Zn 65					Ra 223				
Se 79					Ra 225				
Kr 81					Ra 226				
Kr 85					Ra 228				
Rb 87					Ac 227				
Sr 90					Th 227				
Zr 93					Th 228				
Nb 91					Th 229				
Nb 92					Th 230				
Nb 93m					Th 232				
Nb 94					Th 234				
Mo 93					Pa 231				
Tc 97					Pa 233				
Tc 99					0 232				
Ru 106					0 233				
Pa 107					0 234				
Ag 100m	6 91E 11	A A 1	6 91 E 11	CC 2	U 236				
Cd 109	0.012-11		0.012-11	00 2	U 238				
Cd 113m					Np 237				
Sn 119m					Pu 236				
Sn 121m					Pu 238				
Sn 123					Pu 239				
Sn 126					Pu 240				
Sb 125	2.36E-06	AA 1	~2.36E-06	CC 2	Pu 241				
Sb 126					Pu 242				
Te 125m					Am 241				
Te 127m					Am 242m				
l 129					Am 243				
Cs 134					Cm 242				
Cs 135					Cm 243				
Cs 137	3.02E-05	AA 1	~3.02E-05	CC 2	Cm 244				
Ba 133					Cm 245				
La 137					Cm 248	l			
La 130					Cf 249				
De 144 Pm 145					Cf 250				
Pm 147					Cf 251				
Sm 147					Cf 252	1			
Sm 151					Other a	4.39E-06	AA 1	~4.39E-06	CC 2
Eu 152					Other b/g	l			
Eu 154					Total a	4.39E-06	AA 1	~4.39E-06	CC 2
Eu 155					Total b/g	6.15E-02	AA 1	~6.15E-02	CC 2

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3 C a factor of 10

D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined 8 Not expected to be present in significant quantity