SITE Berkelev

SITE OWNER **Nuclear Decommissioning Authority**

Nο

WASTE CUSTODIAN Magnox Limited

LLW **WASTE TYPE**

Is the waste subject to

WASTE VOLUMES

Scottish Policy:

At 1.4.2022..... Stocks: $0 \, \text{m}^3$ 1.4.2074 - 31.3.2077...... 1116.0 m³ Future arisings -Total future arisings: 1116.0 m³

Total waste volume: 1116.0 m³

Comment on volumes: Waste arisings are assumed to occur at a uniform rate over 3 years. Final Dismantling &

> Site Clearance is assumed to commence in 2070 with reactor dismantling commencing in 2074 and lasting for 3 years. The volumes and radioactivity have been calculated for 85

Reported

years after reactor shutdown, i.e. 2074.

Uncertainty factors on Stock (upper):

Х volumes: Stock (lower):

Arisings (upper) x 1.2

Arisings (lower) x 0.8

WASTE SOURCE Wastes arising from contamination control procedures during plant dismantling.

PHYSICAL CHARACTERISTICS

General description: A variety of combustible and non combustible materials. No large items are expected.

Metallic pipe and other items (~50% vol), plastic pipework, sheet and other items (~10% Physical components (%vol):

vol), rubber gloves and other items (~5% vol), clothing (~5% vol), wood (~5% vol), encapsulated sludge (~5% vol), air filters (~5% vol), combustible material (e.g. paper

sheet) (~15-20 % vol). Percentages of constituents are very uncertain.

Sealed sources: The waste does not contain sealed sources.

Bulk density (t/m3):

Comment on density: The density is likely to lie between 0.5 and 1.5 t/m³.

CHEMICAL COMPOSITION

General description and

components (%wt):

The waste is expected to include cloth (~5%vol), plastics (~15%vol), paper (~15%vol), wood (~5%vol), rubber (~5%vol), encapsulated sludge (~5%vol), metals (~50%vol).

Percentages of constituents are very uncertain.

Chemical state:

Chemical form of radionuclides:

H-3: The chemical form of tritium has not been assessed. C-14: The chemical form of carbon 14 has not been assessed. CI-36: The chemical form of chlorine 36 has not been assessed.

Metals and alloys (%wt): Metal thicknesses will probably be typically 1-3 mm.

> % of total C14 (%wt) Type(s) / Grade(s) with proportions activity

Stainless steel..... <<1.0

Other ferrous metals..... ~50.0

Iron.....

Aluminium..... <<1.0

Beryllium...... 0

Cobalt.....

Copper..... <<1.0

Lead...... 0

Magnox/Magnesium..... 0

	Nickel			
	Titanium			
	Uranium			
	Zinc	0		
	Zircaloy/Zirconium	0		
	Other metals	<<1.0	There may be "other" metals present (<<1%).	
Organics (%			be present. Halogenated plastics and rue not been determined.	bbers are
		(%wt)	Type(s) and comment	% of total C14
	Total cellulosics	~25.0		activity
	Paper, cotton	~20.0		
	Wood	~5.0		
	Halogenated plastics	<7.5		
	Total non-halogenated plastics	<7.5		
	Condensation polymers	<3.8		
	Others	<3.8		
	Organic ion exchange materials	0		
	Total rubber	~5.0		
	Halogenated rubber	<2.5		
	Non-halogenated rubber	<2.5		
	Hydrocarbons			
	Oil or grease			
	Fuel			
	Asphalt/Tarmac (cont.coal tar)			
	Asphalt/Tarmac (no coal tar)			
	Bitumen			
	Others			
	Other organics	TR		
Other materi	-		east trace quantities.	
	,,,,			
		(%wt)	Type(s) and comment	% of total C14 activity
	Inorganic ion exchange materials	0		
	Inorganic sludges and flocs	0		
	Soil	TR		
	Brick/Stone/Rubble	TR		
	Cementitious material	~5.0	encapsulated sludges	
	Sand			
	Glass/Ceramics	0		
	Graphite	TR		
	Desiccants/Catalysts			
	Asbestos	0		
	Non/low friable			

	Moderately friable		
	Highly friable		
	Free aqueous liquids	0	
	Free non-aqueous liquids	0	
	Powder/Ash	0	
Inorganic a	anions (%wt): Only likely to be pre	esent in tra	ce quantities.
		(%wt)	Type(s) and comment
	Fluoride	TR	
	Chloride	TR	
	lodide	0	
	Cyanide	0	
	Carbonate	TR	
	Nitrate	TR	
	Nitrite	TR	
	Phosphate	TR	
	Sulphate	TR	
	Sulphide	TR	
	of interest for No materials likely eptance criteria:	to pose a fi	ire or other non-radiological hazard have been identified.
		(%wt)	Type(s) and comment
	Combustible metals	0	
	Low flash point liquids	0	
	Explosive materials	0	
	Phosphorus	0	
	Hydrides	0	
	Biological etc. materials	0	
	Biodegradable materials		
	Putrescible wastes	0	
	Non-putrescible wastes		
	Corrosive materials	0	
	Pyrophoric materials	0	
	Generating toxic gases	0	
	Reacting with water	0	
	Higher activity particles		
	Soluble solids as bulk chemical compounds		
	substances / -dous pollutants:		
		(%wt)	Type(s) and comment
	Acrylamide	(,,,,,,	21 (27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Benzene		
	Chlorinated solvents		

Formaldehyde				
Organometallics				
Phenol				
Styrene				
Tri-butyl phospha	te			
Other organophos	sphates			
Vinyl chloride				
Arsenic				
Barium				
Boron				
Boron (in Boral))			
Boron (non-Bor	al)			
Cadmium				
Caesium				
Selenium				
Chromium				
Molybdenum				
Thallium				
Tin				
Vanadium				
Mercury compour	nds			
Others				
Electronic Electri	cal Equipment (EEE)			
EEE Type 1				
EEE Type 2				
EEE Type 3				
EEE Type 4				
EEE Type 5				
Complexing agents (%wt):	Yes			
		(%wt)	Type(s) and comment	
EDTA				
DPTA				
NTA				
Polycarboxylic ac	ids			
Other organic con	nplexants			
Total complexing	agents	TR		
Potential for the waste to contain discrete items:)/"substantial" thickness items con ecycled then DI Limits n/a	sidere

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)		
Incineration		
Solidification		
Decontamination		
Metal treatment		
Size reduction		
Decay storage		
Recyling / reuse		
Other / various		
None		100.0

Comment on planned treatments:

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository		
Expected to be consigned to a Landfill Facility	100.0	1.0
Expected to be consigned to an On-Site Disposal Facility		
Expected to be consigned to an Incineration Facility		
Expected to be consigned to a Metal Treatment Facility		
Expected to be consigned as Out of Scope		
Expected to be recycled / reused		
Disposal route not known		

Classification codes for waste expected to be consigned to a landfill facility:

17 04 05, 17 02 01, 17 02 03, 20 01 01

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Noute	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
		_	_	_	

Waste Packaging for Disposal: (Not applicable to this waste stream)

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding)			. 5
Other			

Other information:

Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream)

Container voidage:

Waste Characterisation

Form (WCH):

Waste consigned for disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation:

Bounding cuboidal volume:

Inaccessible voidage:

Other information:

RADIOACTIVITY

Source: Contamination by activation products from the reactor structure.

Uncertainty: The activities quoted are those at the time of Final Dismantling & Site Clearance (85 years

after Station shutdown).

Definition of total alpha

and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of

radioactivities:

The specific activity has been calculated from the weighted average of all the other ILW and LLW streams assuming a total specific activity for the beta/gamma component.

Other information: The activities quoted are those at 85 years after reactor shutdown, i.e. in 2074.

	Mean radioactivity, TBq/m³			Mean radioactivity, TBq/m³					
Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code	Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code
H 3			1.79E-06	CC 2	Gd 153				8
Be 10				8	Ho 163				8
C 14			2.28E-05	CC 2	Ho 166m				8
Na 22				8	Tm 170				8
AI 26			1E-09	CC 2	Tm 171				8
CI 36			6.39E-08	CC 2	Lu 174				8
Ar 39				8	Lu 176				8
Ar 42				8	Hf 178n				8
K 40				8	Hf 182				8
Ca 41			7.62E-08	CC 2	Pt 193				8
Mn 53				8	TI 204				8
Mn 54				8	Pb 205				8
Fe 55				8	Pb 210				8
Co 60			9.09E-08	CC 2	Bi 208				8
Ni 59			1.14E-06	CC 2	Bi 210m				8
Ni 63			7.4E-05	CC 2	Po 210				8
Zn 65				8	Ra 223				8
Se 79				8	Ra 225				8
Kr 81				8	Ra 226				8
Kr 85				8	Ra 228				8
Rb 87				8	Ac 227 Th 227				8 8
Sr 90				8	Th 228				8
Zr 93				8	Th 229				8
Nb 91				8	Th 230				8
Nb 92				6	Th 232				8
Nb 93m			4 475 00	8	Th 234				8
Nb 94 Mo 93			4.47E-08 5.49E-09	CC 2 CC 2	Pa 231				8
Tc 97			5.49E-09	8	Pa 233				8
Tc 99			1.17E-09	CC 2	U 232				8
Ru 106			1.171-09	8	U 233				8
Pd 107				8	U 234				8
Ag 108m				8	U 235				8
Ag 110m				8	U 236				8
Cd 109				8	U 238				8
Cd 113m				8	Np 237				8
Sn 119m				8	Pu 236				8
Sn 121m			4.51E-08	CC 2	Pu 238				8
Sn 123				8	Pu 239				8
Sn 126				8	Pu 240				8
Sb 125				8	Pu 241				8
Sb 126				8	Pu 242				8
Te 125m				8	Am 241				8
Te 127m				8	Am 242m				8
I 129				8	Am 243				8
Cs 134				8	Cm 242				8
Cs 135				6	Cm 243				8
Cs 137				8	Cm 244				8
Ba 133				8	Cm 245				8
La 137				8	Cm 246				8
La 138				8	Cm 248				8
Ce 144				8	Cf 249				8
Pm 145				8	Cf 250 Cf 251				8 8
Pm 147				8	Cf 251				8
Sm 147				8	Other a				U
Sm 151			4.005.00	8	Other b/g				
Eu 152			1.22E-08	CC 2	Total a	0		0	
Eu 154				8	Total b/g	0		1.00E-04	CC 2
Eu 155	<u> </u>			8			}		

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10

D a factor of 100 E a factor of 1000

Bands quantify uncertainty in mean radioactivity.

- Code

 1 Measured activity
 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity