SITE	Berkeley	
SITE OWNER	Nuclear Decommissioning Authority	
WASTE CUSTODIAN	Magnox Limited	
WASTE TYPE	ILW	
Is the waste subject to Scottish Policy:	No	
WASTE VOLUMES		Reported
Stocks:	At 1.4.2022	14.3m ³
Total future arisings:		0 m³
Total waste volume:		14.3m ³
Comment on volumes:	There will be no further arisings of th the 2004 Inventory.	is waste stream. The volume was reassessed prior to
Uncertainty factors on	Stock (upper): x 1.1	Arisings (upper) x
volumes:	Stock (lower): x 0.9	Arisings (lower) x
WASTE SOURCE	The sludge originates from routine fi Berkeley Technology Centre.	Itration of liquid effluents and cooling pond water at

PHYSICAL CHARACTERISTICS

General description:	The waste consists of contaminated Celite, a diatomaceous earth used as a Funda filter pre-coat in the Berkeley Technology Centre Active Effluent Treatment Plant. Sludges were collected on the Funda pre-coating filter and subsequently discharged along with the pre-coat material as a dry effluent residue into a can or liner lined with a PVC bag. The trapped sludge originated predominately from the treatment of general site low activity effluent but has also resulted from the treatment of higher activity effluents from the fuel pond. It should be noted that the material discharged into the drums would be damp and not completely dry. The term 'dry' is used to indicate that the sludge is not fully flooded or diluted in water as is normal for other sludge arisings. The waste will consist of magnesium hydroxide and other particulate material present in the Berkeley Technology Centre fuel pond, along with fuel contamination and graphite dusts. There will also be colbalt hexacyanoferrate which was added to assist in the removal of caesium from the ponds during filtration in the Funda filter. The waste drums will be processed as Miscellaneous Contaminated Items. Originally, this waste stream was classified as LLW, however it will now be treated and processed as ILW. There are no large items that may require special handling.
Physical components (%vol):	The waste comprises Celite, a diatomaceous earth consisting mainly of calcium silicate. There might also be traces of colbalt hexacyanoferrate which was added to assist in the removal of caesium from the ponds during filtration in the Funda filter. The waste containers are not included in this waste stream as it will be processed with the Miscellaneous Contaminated Items streams.
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	0.4
Comment on density:	The density has been calculated using weights of Celite contained in Red Cans and Black Can Liners and the volumes already identified.

CHEMICAL COMPOSITION

General description and components (%wt):	There are 73 red cans and 67 black can liners containing Celite in this waste stream. The contaminated Celite consists of magnesium hydroxide, magnesium carbonate, silicon dioxide, calcium silicate, residual water and a range of other materials, including PVC (wt% not assessed). The drum is not included in this waste stream.
Chemical state:	Alkali
Chemical form of radionuclides:	 H-3: Most tritium is expected to be present as water but some may be present in the form of other inorganic compounds or as organic compounds. C-14: Carbon 14 may be present as graphite. Cl-36: The chemical form of chlorine 36 has not been determined. Se-79: . U: Chemical form of U isotopes has not been determined but may be oxides. Pu: The chemical form of plutonium isotopes has not been determined but may be plutonium oxides.

WASTE STREAM 9A58 Sludge	e (filter-µ	precoat) from Berkeley Technolo	gy Centre
Metals and alloys (%wt): Any metals presen	t would be	in particulate form.	
	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel	. TR	The presence of metals has not been confirmed by measurement but there may be metal particles in the sludge. However only trace quantities are expected. There are steel drums containing the waste.	activity
Other ferrous metals			
Aluminium	-		
Beryllium			
Cobalt			
Copper			
Lead.			
Magnox/Magnesium			
Nickel			
Titanium			
Uranium			
Zinc			
Zircaloy/Zirconium			
Other metals		"Other" metals have not been	
		determined.	
Organics (%wt): A detailed assess		anic materials in the waste has not been n	nade.
	(%wt)	Type(s) and comment	% of total C14 activity
Total cellulosics	TR		,
Paper, cotton	TR		
Wood	0		
Halogenated plastics	~2.0	PVC.	
Total non-halogenated plastics	0		
Condensation polymers	0		
Others	0		
Organic ion exchange materials	TR		
Total rubber	TR		
Halogenated rubber	TR		
Non-halogenated rubber	TR		
Hydrocarbons			
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Others			
Other organics	NE		

2022 Inventory

WASTE STREAM

Other materials (%wt):

9A58

Sludge (filter-precoat) from Berkeley Technology Centre

Traces of graphite may be present.

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	TR		
Inorganic sludges and flocs	~98.0		
Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	0		
Sand			
Glass/Ceramics	0		
Graphite	TR		
Desiccants/Catalysts			
Asbestos	0		
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids	NE		
Free non-aqueous liquids	TR		
Powder/Ash	0		

Inorganic anions (%wt):

Inorganic anions will be present but have not been fully quantified.

Type(s) and comment

	(%wt)
Fluoride	NE
Chloride	NE
lodide	0
Cyanide	TR
Carbonate	NE
Nitrate	NE
Nitrite	NE
Phosphate	NE
Sulphate	NE
Sulphide	NE

Materials of interest for waste acceptance criteria: The waste is unlikely to present a fire hazard but this requires confirmation. There might be trace quantities of biological material.

	(%wt)	Type(s) and comment
Combustible metals	TR	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	0	
Hydrides	0	
Biological etc. materials	TR	
Biodegradable materials	0	
Putrescible wastes	0	

2022 Inventory

WASTE STREAM 9A58 Sludge (filter-precoat) from Berkeley Technology Centre

Non-putrescible wastes	
Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	TR
Higher activity particles	
Soluble solids as bulk chemical compounds	

Hazardous substances / None expected. non hazardous pollutants:

	(%
Acrylamide	
Benzene	
Chlorinated solvents	
Formaldehyde	
Organometallics	
Phenol	
Styrene	
Tri-butyl phosphate	
Other organophosphates	
Vinyl chloride	
Arsenic	
Barium	
Boron	0
Boron (in Boral)	
Boron (non-Boral)	
Cadmium	
Caesium	
Selenium	
Chromium	
Molybdenum	
Thallium	
Tin	
Vanadium	
Mercury compounds	
Others	
Electronic Electrical Equipment (EEE)	
ЕЕЕ Туре 1	
ЕЕЕ Туре 2	
EEE Type 3	
EEE Type 4	
ЕЕЕ Туре 5	

(%wt)

vt) Type(s) and comment

contain discrete items:

Complexing agents (%wt): Yes

		(%wt)	Type(s) and comment	
EDTA				
DPTA				
NTA				
Polycarboxylic ac	cids			
Other organic co	mplexants			
Total complexing	agents	TR		
Potential for the waste to	No. In & of itself no	ot a DI; ass	sumed not likely to contain any	"rogue" items that

PACKAGING AND CONDITIONING

could be.

Conditioning method:	This stream is to be co-packaged with 9A36, 9A37, 9A38, 9A57, 9A59, 9A65, 9A68, 9A69, 9A70, 9A71, 9A72, 9A75, 9A77, 9A78, 9A82. Packages are assigned to 9A68, 9A71 & 9A75.
Plant Name:	-
Location:	Berkeley Site
Plant startup date:	-
Total capacity (m³/y incoming waste):	-
Target start date for packaging this stream:	-
Throughput for this stream (m ³ /y incoming waste):	-
Other information:	-

Lil typ . . .

Likely container type:	Container	Waste packaged (%vol)	Waste loading (m ³)	Payload (m³)	Number of packages	

Likely container type comment:	-
Range in container waste volume:	-
Other information on containers:	-
Likely conditioning matrix: Other information:	-
Conditioned density (t/m ³):	-
Conditioned density comment:	-
Other information on conditioning:	-
Opportunities for alternative disposal routing:	-

WASTE STREAM

9A58

Sludge (filter-precoat) from Berkeley Technology Centre

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	-	-	-	-	-

RADIOACTIVITY	
Source:	Dried sludge contaminated by fission products and activation products including actinides.
Uncertainty:	Specific activity is a function of operating history. The values quoted are indicative of the activities that might be expected.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	Activities have been estimated.
Other information:	This waste stream includes some drums known to be of comparatively high activity so that the average activity may approach the ILW/LLW limit. The error bands are intended to allow for the potential influence of these higher activity drums.

WASTE STREAM 9A58 Sludge (filter-precoat) from Berkeley Technology Centre

		Mean radioacti	vity TBa/m³		Mean radioactivity, TBq/m ³			
	Waste at	Mean radioactivity, TBq/m ³ Waste at Bands and Future Bands and			Waste at	Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings Code	Nuclide	1.4.2022	Code	arisings	Code
H 3	<1.29E-04	D 3		Gd 153		8		
Be 10		8		Ho 163		8		
C 14	6.00E-07	CD 2		Ho 166m		8		
Na 22		8		Tm 170		8		
AI 26		8		Tm 171		8		
CI 36	6E-09	CD 2		Lu 174		8		
Ar 39		8		Lu 176		8		
Ar 42		8		Hf 178n		8		
K 40		8		Hf 182		8		
Ca 41		8		Pt 193		8		
Mn 53		8		TI 204		8		
Mn 54		8		Pb 205		8		
Fe 55	4.40E-08	CD 2		Pb 210		8		
Co 60	4.17E-06	CD 2		Bi 208		8		
Ni 59	1E-07	CD 2		Bi 210m		8		
Ni 63	8.10E-06	CD 2		Po 210		8		
Zn 65		8		Ra 223		8		
Se 79	1.72E-09	CD 2		Ra 225		8		
Kr 81		8		Ra 226		8		
Kr 85		8		Ra 228		8		
Rb 87		8		Ac 227		8		
Sr 90	4.89E-04	CD 2		Th 227		8		
Zr 93		8		Th 228		8		
Nb 91		8		Th 229		8		
Nb 92		8		Th 230		8		
Nb 93m		8		Th 232		8		
Nb 94		8		Th 234	1E-07	CC 2		
Mo 93		8		Pa 231		8		
Tc 97		8		Pa 233	1.05E-08	CC 2		
Tc 99	2E-07	CD 2		U 232		8		
Ru 106		8		U 233		8		
Pd 107		8		U 234	1.00E-07	CD 2		
Ag 108m		8		U 235	3E-09	CD 2		
Ag 110m		8		U 236	1.00E-08	CD 2		
Cd 109		8		U 238	1E-07	CD 2		
Cd 113m		8		Np 237	1.05E-08	CD 2		
Sn 119m		8		Pu 236		8		
Sn 121m		8		Pu 238	3.56E-05	CD 2		
Sn 123		8		Pu 239	5E-05	CD 2		
Sn 126	4.35E-09	CD 2		Pu 240	6.00E-05	CD 2		
Sb 125		8		Pu 241	9.74E-04	CD 2		
Sb 126		8		Pu 242	5E-08	CD 2		
Te 125m		8		Am 241	1.31E-04	CD 2		
Te 127m		8		Am 242m	2.80E-07	CD 2		
l 129		8		Am 243	1.00E-07	CD 2		
Cs 134		8		Cm 242	2.31E-07	CD 2		
Cs 135	1E-08	CD 2		Cm 243	4.95E-08	CD 2		
Cs 137	4.95E-04	CD 2		Cm 244	3.94E-07	CD 2		
Ba 133		8		Cm 245		8		
La 137		8		Cm 246		8		
La 138		8		Cm 248		8		
Ce 144		8		Cf 249		8		
Pm 145		8		Cf 250		8		
Pm 147	1.71E-08	CD 2		Cf 251		8		
Sm 147		8		Cf 252		8		
Sm 151	2.67E-06	CD 2		Other a		č		
Eu 152	9.18E-08	CD 2		Other b/g				
Eu 154	1.50E-06	CD 2		Total a	2.77E-04	CD 2	0	
Eu 155	1.19E-07	CD 2		Total b/g	2.11E-03	CD 2	0	
		<u> </u>		i otar bry	2	<u> </u>	i v	

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3

C a factor of 10 D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity