SITE	Berkeley		
SHE	Demoloy		
SITE OWNER	Nuclear Decommissioning Authority		
WASTE CUSTODIAN	Magnox Limited		
WASTE TYPE	ILW		
Is the waste subject to Scottish Policy:	No		
WASTE VOLUMES		Reported	
Stocks:	At 1.4.2022	19.7 m ³	
Total future arisings:	0 m ³		
Total waste volume:		19.7 m ³	
Comment on volumes:	Station operation ceased in March 1989. This waste was accumulated between 1978 and 1983. Accumulation of sludge in drums ceased in 1983. The further operational sludge arisings are shown in waste stream 9A27. The volume split between this stream and stream 9A72 was revised prior to the 2004 Inventory in accordance with a Project Team judgement.		
Uncertainty factors on volumes:	Stock (upper): x 1.2 Stock (lower): x 0.9	Arisings (upper) x Arisings (lower) x	
WASTE SOURCE		ration of liquid effluents and cooling pond water.	

PHYSICAL CHARACTERISTICS

General description:	This waste arose from the routine filtration of liquid effluent and cooling pond water. The waste consists of corrosion products such as magnesium hydroxide and carbonate detached from fuel elements and extraneous materials such as flakes of paint. There will also be drain debris, asbestos fibre and other materials used as a precoat material. Some of the sludge drums will contain cotton socks, used for filtration purposes and PVC bags. This waste stream was originally classified as LLW, however it is not possible to distinguish between the caesium sludge (9A71 and 72) and this waste and so it will all be processed as ILW. The waste drums form part of 9A916 and will be processed as MCI waste. There are no large items that may require special handling. The sludge cans have approximate dimensions 890 mm long x 305 mm diameter.
Physical components (%vol):	The waste consists of 100% sludge from the Active Effluent Treatment Plant.
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	~1.1
Comment on density:	-

CHEMICAL COMPOSITION

General description and components (%wt):	The waste contains magnesium hydroxide, magnesium carbonate, water and a range of other materials, including ammonium molybdenum phosphate and potentially asbestos, which was used as a pre-coat. The solids content of the sludge is unknown as it varies from container to container. The slurry may vary from 'toothpaste' to water in constituency. Asbestos, cellulose and other precoat materials will probably account for <0.25wt%. The cotton socks and PVC bags will be removed and will form part of the BPS MCI waste stream (9A36-38). The waste can is included in waste stream 9A916.
Chemical state:	Alkali
Chemical form of radionuclides:	 H-3: Most tritium is expected to be present as water but some may be present in the form of other inorganic compounds or as organic compounds. C-14: Carbon 14 will probably be present as graphite. Cl-36: Chlorine 36 will probably be present as chloride. Se-79: The selenium content is insignificant. Tc-99: The technetium content is insignificant. Ra: The radium isotope content is insignificant. The thorium isotope content is insignificant. U: Chemical form of U isotopes has not been determined but may be oxides. Np: The neptunium content is insignificant. Pu: Chemical form of Pu isotopes has not been determined but may be oxides.
Metals and alloys (%wt):	Any metal present is as finely divided material. There is no sheet or bulk metal.
	2022 Inventory

	(%wt)	Type(s) / Grade(s) with proportions
Stainless steel	NE	
Other ferrous metals	NE	
Iron		
Aluminium	NE	
Beryllium	TR	
Cobalt		
Copper	NE	
Lead	TR	
Magnox/Magnesium	TR	Magnox will not be present except possibly in trace quantities.
Nickel		
Titanium		
Uranium		
Zinc	NE	
Zircaloy/Zirconium	NE	
Other metals	NE	The waste is contained within thick steel drums which when removed will form part of the 9A916 waste

Organics (%wt):

A number of sludge drums will contain cotton socks, which were used as filters. The socks were originally placed in PVC bags before being placed in the steel drums, however it is not known which drums they were disposed of in. There may also be some oil or grease present in the sludge.

stream.

% of total C14 activity

	(%wt)	Type(s) and comment	% of total C14
Total cellulosics	NE		activity
Paper, cotton	NE		
Wood	NE		
Halogenated plastics	NE		
Total non-halogenated plastics	NE	The presence of halogenated plastics and rubbers has not been fully assessed.	
Condensation polymers	NE		
Others	NE		
Organic ion exchange materials	NE		
Total rubber	NE	The presence of halogenated plastics and rubbers has not been fully assessed.	
Halogenated rubber	NE		
Non-halogenated rubber	NE		
Hydrocarbons			
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Others			

2022 Inventory

Other organics.....

Other materials (%wt): Graphite is expected in at least trace quantities.

NE

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	NE		
Inorganic sludges and flocs	~98.0		
Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	0		
Sand			
Glass/Ceramics	0		
Graphite	TR		
Desiccants/Catalysts			
Asbestos	<0		
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids	Р		
Free non-aqueous liquids	NE		
Powder/Ash	0		
apiene (% wt): The presence of in	orgonio on	ions shown in the table has not been ful	ly account

Inorganic anions (%wt): The presence of inorganic anions shown in the table has not been fully assessed.

	(%wt)
Fluoride	NE
Chloride	NE
lodide	NE
Cyanide	0
Carbonate	NE
Nitrate	NE
Nitrite	NE
Phosphate	NE
Sulphate	NE
Sulphide	NE

wt) Type(s) and comment

Materials of interest for waste acceptance criteria:

A number of the drums may contain hydrogen, due either to radiolytic degradation of the water or corrosion of the steel drum. This may pressurise the containers. It is anticipated that the solids will have settled out from the water phase and compacted to some degree.

	(%wt)	Type(s) and comment
Combustible metals	TR	
Low flash point liquids	0	
Explosive materials	NE	
Phosphorus	0	
Hydrides	0	
Biological etc. materials	TR	

Biodegradable materials	0
Putrescible wastes	0
Non-putrescible wastes	
Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	NE
Reacting with water	TR
Higher activity particles	
Soluble solids as bulk chemical compounds	

Hazardous substances / None expected. non hazardous pollutants:

(%wt)

0

Type(s) and comment

Acrylamide
Benzene
Chlorinated solvents
Formaldehyde
Organometallics
Phenol
Styrene
Tri-butyl phosphate
Other organophosphates
Vinyl chloride
Arsenic
Barium
Boron
Boron (in Boral)
Boron (non-Boral)
Cadmium
Caesium
Selenium
Chromium
Molybdenum
Thallium
Tin
Vanadium
Mercury compounds
Others
Electronic Electrical Equipment (EEE)
Electronic Electrical Equipment (EEE) EEE Type 1
EEE Type 1

2022 Inventory

EEE Type	5
----------	---

Complexing agents (%wt): Yes

	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		
Total complexing agents	TR	

Potential for the waste to contain discrete items: No. In & of itself not a DI; assumed not likely to contain any "rogue" items that could be.

PACKAGING AND CONDITIONING

Conditioning method:	This stream is to be co-packaged with 9A37, 9A38, 9A57, 9A58, 9A59, 9A65, 9A68, 9A69, 9A70, 9A71, 9A75, 9A77, 9A82. Packages are assigned to 9A68, 9A71 & 9A75.
Plant Name:	-
Location:	Berkeley Site
Plant startup date:	-
Total capacity (m ³ /y incoming waste):	-
Target start date for packaging this stream:	-
Throughput for this stream (m ³ /y incoming waste):	-

Other information:

Likely container type:	Container	Waste packaged (%vol)	Waste loading (m ³)	Payload (m ³)	Number of packages

Likely container type comment:	-
Range in container waste volume:	-
Other information on containers:	-
Likely conditioning matrix: Other information:	-
Conditioned density (t/m ³): Conditioned density comment:	-
Other information on conditioning:	-
Opportunities for alternative disposal routing:	-

WASTE STREAM	9A78	BPS Sludo	ge in Drums		
Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	-	-	-	-	-

Source:	Sludge resulting from the treatment of pond and effluent waters and contaminated by fission products and activation products including actinides.
Uncertainty:	Specific activity is a function of Station operating history. The values quoted are indicative of the activities that might be expected.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	The values were derived by extrapolation from available data. M/EF/BKA/REP/0006/18 Issue 1
Other information:	-

RADIOACTIVITY

	Mean radioactivity, TBq/m ³				Mean radioactivity, TBq/m ³				
Nuclide		Bands and Code	Future arisings	Bands and Code	Nuclide	Waste at	Bands and Code	Future arisings	Bands and Code
H 3	1.4.2022 9.29E-05	CD 3	ansings	Code	Gd 153	1.4.2022	8	ansings	Code
Be 10	9.292-03	8			Ho 163		8		
C 14	4.60E-06	CD 3			Ho 166m		8		
Na 22		8			Tm 170		8		
AI 26		8			Tm 171		8		
CI 36	1.8E-08	CD 3			Lu 174		8		
Ar 39		8			Lu 176		8		
Ar 42		8			Hf 178n		8		
K 40		8			Hf 182		8		
Ca 41	2.7E-05	CD 3			Pt 193		8		
Mn 53		8			TI 204		8		
Mn 54		8			Pb 205		8		
Fe 55	1.96E-07	CD 3			Pb 210		8		
Co 60	2.29E-05	CD 3			Bi 208		8		
Ni 59	5.5E-07	CD 3			Bi 210m		8		
Ni 63	5.78E-05	CD 3			Po 210		8		
Zn 65	4 4 5 9 7	8			Ra 223		8		
Se 79 Kr 81	1.1E-07	CD 3 8			Ra 225 Ra 226		8 8		
Kr 85		8 8			Ra 226 Ra 228		о 8		
Rb 87		о 8			Ra 220 Ac 227		8		
Sr 90	1.30E-02	CD 3			Th 227		8		
Zr 93	6.3E-06	CD 3			Th 228		8		
Nb 91	0.02 00	8			Th 229		8		
Nb 92		8			Th 230		8		
Nb 93m	1.2E-06	CD 3			Th 232		8		
Nb 94		8			Th 234	6.4E-06	CD 3		
Mo 93		8			Pa 231		8		
Tc 97		8			Pa 233	3.8E-05	CD 3		
Tc 99	3.1E-05	CD 3			U 232		8		
Ru 106		8			U 233		8		
Pd 107		8			U 234	6.20E-06	CD 3		
Ag 108m	8.86E-08	CD 3			U 235	2E-07	CD 3		
Ag 110m Cd 109		8			U 236 U 238	1.3E-06	CD 3		
Cd 109 Cd 113m		8 8			0 238 Np 237	6.4E-06 3.8E-05	CD 3 CD 3		
Sn 119m		о 8			Pu 236	3.0E-05	8		
Sn 121m		8			Pu 238	2.84E-04	CD 3		
Sn 123		8			Pu 239	4.4E-04	CD 3		
Sn 126	5.4E-07	CD 3			Pu 240	6.30E-04	CD 3		
Sb 125	2.82E-08	CD 3			Pu 241	9.52E-03	CD 3		
Sb 126	7.56E-08	CD 3			Pu 242	5E-06	CD 3		
Te 125m	7.07E-09	CD 3			Am 241	2.74E-03	CD 3		
Te 127m		8			Am 242m	2.96E-05	CD 3		
l 129	6.3E-08	CD 3			Am 243	6.50E-06	CD 3		
Cs 134	1.64E-09	CD 3			Cm 242	2.44E-05	CD 3		
Cs 135	3.8E-07	CD 3			Cm 243	3.08E-07	CD 3		
Cs 137	3.08E-02	CD 2			Cm 244	7.04E-06	CD 3		
Ba 133		8			Cm 245	6.30E-07	CD 3		
La 137 La 138		8 8			Cm 246 Cm 248	6.30E-07	CD 3 8		
Ce 144		о 8			Cfi 240 Cf 249		8		
Pm 145		8			Cf 249 Cf 250		8		
Pm 147	1.18E-05	CD 3			Cf 250		8		
Sm 147		8			Cf 252		8		
Sm 151	2.83E-04	CD 3			Other a				
Eu 152	8.58E-03	CD 3			Other b/g				
Eu 154	3.69E-05	CD 3			Total a	4.19E-03	CD 3	0	
Eu 155	2.21E-06	CD 3			Total b/g	6.26E-02	CD 3	0	

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3 C a factor of 10

D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity