SITE Berkeley

SITE OWNER Nuclear Decommissioning Authority

WASTE CUSTODIAN Magnox Limited

WASTE TYPE LLW

Is the waste subject to

Scottish Policy:

Nο

WASTE VOLUMES

Comment on volumes: Current volume estimates will be subject to review and refinement as Care & Maintenance

Preparation proceeds. Arisings are predicted by quantity survey and contamination levels advised by health physics. Volumes include a contingency of 5% by vol secondary wastes

(handling / decontamination).

Uncertainty factors on

volumes:

Stock (upper): x 1.1 Arisings (upper) x 1.2 Stock (lower): x 0.9 Arisings (lower) x 0.8

WASTE SOURCE Waste stream 9A921 consists of wastes that arise from the AETP decontamination and

C&M Preps work on Berkeley site. The waste is expected to contain redundant pipework, rubber, plastic, pumps, motors and rags. Both activation and fission product, as well as

actinide contamination, is expected.

PHYSICAL CHARACTERISTICS

General description: Soft and hard trash. Metal waste associated with the decommissioning. There are no large

items that will require special handling. Includes some secondary wastes. This waste

stream consists of wastes arising from the decommissioning of the AETP and decontamination work on the Berkeley Decommissioning Site. It does not include any of the primary waste (i.e. sludge or liquids). The waste is expected to contain redundant

pipework, rubber, plastic, pumps, motors and rags.

Physical components (%wt): Metal: 75%, Concrete / rubble; 16%, Biodegradable- non putrescibles 1%, plastics 2%,

rubber 1 % and others (Motors, etc = 0.39 m3 / 1.55 tSand Pressure Filter Media = 2.2

m3 / 1.65 t) 5%

Sealed sources: The waste does not contain sealed sources.

Bulk density (t/m³): ~1.41

Comment on density: Calculated from the WCH data, mass divided by volume.

CHEMICAL COMPOSITION

General description and

components (%wt):

Metal: 75%, Concrete / rubble; 16%, Biodegradable- non putrescibles 1%, plastics 2%, rubber 1 % and others (Motors, etc = 0.39 m3 / 1.55 tSand Pressure Filter Media = 2.2

m3 / 1.65 t) 5%

Chemical state: Alkali

Chemical form of radionuclides:

H-3: Most tritium is expected to be present as water but some may be in the form of other

inorganic compounds or as organic compounds.

C-14: Chemical form of carbon 14 has not been determined but may be graphite.

CI-36: Chemical form of chlorine 36 has not been determined.

U: Chemical form of uranium isotopes has not been determined but may be uranium

oxides.

Pu: Chemical form of plutonium isotopes has not been determined but may be plutonium

oxides.

Metals and alloys (%wt): Items will have to be cut for packaging. Large volumes of metal plant typically include steel

skip mast shutter, waste retrieval machine, waste retrieval running track, access doors to

vault etc.

	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel	~1.4	Tanks, other	
Other ferrous metals	~63.7	Mild Steel - Ventilation equipment, deplanting materials	
Iron	1.5	Cast iron gully pot, cast iron parts	
Aluminium	<0.01	Surface area = 1.5 m2, Sheets, size reduced ladders	
Beryllium	0		
Cobalt			
Copper	~9.0	Cabling	
Lead	NE		
Magnox/Magnesium	0		
Nickel	TR	Alloy Constituent	
Titanium			
Uranium			
Zinc	<0.01	Surface Area = 1 m2, Constituent of galvonised ducting	
Zircaloy/Zirconium	0		
Other metals	1.0	Other metals have not been identified	
			-lti D\/O

Organics (%wt):

The waste contains cellulose in the form of wood and cloth, halogenated plastic as PVC and non-halogenated plastic which includes polythene. Metal in the waste stream consists of contaminated pipes, railings, ventilation ducts, manhole covers etc.

	(%wt)	Type(s) and comment	% of total C14
Total cellulosics	~0		activity
Paper, cotton	NE		
Wood			
Halogenated plastics	~1.0	Secondary waste arising. Halogenated plastic is present as PVC.	
Total non-halogenated plastics	~1.0		
Condensation polymers	~1.0	Secondary waste arising	
Others	NE		
Organic ion exchange materials	0		
Total rubber	1.0		
Halogenated rubber	~0.50		
Non-halogenated rubber	~0.50		
Hydrocarbons			
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Others			
Other organics	TR		

Other materials (%wt):

Concrete scabblings and contaminated brick/blockwork expected. Glass panelling and

mirror from MCU.

	(%wt)	Type(s) and comment	% of total C14
Inorganic ion exchange materials	0		activity
Inorganic sludges and flocs	0		
Soil	NE		
Brick/Stone/Rubble	~16.0		
Cementitious material	~		
Sand	2.9	Sand pressure filter media	
Glass/Ceramics	NE	Cand pressure liner media	
Graphite	0		
Desiccants/Catalysts	Ü		
Asbestos	TR		
Non/low friable	TR	Gasketsamosite (brown)	
Moderately friable		Guorioteani conte (S. e.m.)	
Highly friable			
Free aqueous liquids	0		
Free non-aqueous liquids	0		
Powder/Ash	0		
Inorganic anions (%wt): Trace quantities pr	asant		
morganic anions (7000).			
	(%wt)	Type(s) and comment	
Fluoride	TR		
Chloride	TR		
lodide	TR		
Cyanide	0		
Carbonate	NE		
Nitrate	TR		
Nitrite	TR		
Phosphate	TR	Stainless Steel Constituent	
Sulphate	TR		
Sulphide	TR		
Materials of interest for No material likely to waste acceptance criteria:	o present a	fire or other non-radiological hazard is pr	esent.
	(%wt)	Type(s) and comment	
Combustible metals	0		
Low flash point liquids	0		
Explosive materials	0		
Phosphorus	0		
Hydrides	0		
Biological etc. materials	0		
Biodegradable materials	1.0		
B			

Putrescible wastes.....

	Non-putrescible wastes	1.0	
(Corrosive materials	0	
F	Pyrophoric materials	0	
(Generating toxic gases	0	
F	Reacting with water	0	
ŀ	Higher activity particles		
	Soluble solids as bulk chemical		
(compounds		
Hazardous sub non hazardous			
		(%wt)	Type(s) and comment
A	Acrylamide		
E	Benzene		
(Chlorinated solvents		
F	Formaldehyde		
(Organometallics		
F	Phenol		
9	Styrene		
٦	Fri-butyl phosphate		
(Other organophosphates		
\	/inyl chloride		
A	Arsenic		
E	Barium		
E	Boron	0	
	Boron (in Boral)		
	Boron (non-Boral)		
(Cadmium		
	Caesium		
	Selenium		
	Chromium		
	Molybdenum		
	Thallium		
	Fin		
	√anadium		
	Mercury compounds		
	Others		
ŀ	Electronic Electrical Equipment (EEE)		
	EEE Type 1	Б	0 -# M-1
	EEE Type 2	P	3 off Motors, pumps
	EEE Type 3	Р	12 off vacuum cleaners.
	EEE Type 4		
	EEE Type 5		

Complexing	agents (%wt): No		
		(%wt)	Type(s) and comment
	EDTA		
	DPTA		
	NTA		
	Polycarboxylic acids		
	Other organic complexants		
	Total complexing agents	0	

Potential for the waste to contain discrete items:

Yes. Large Metal Items (LMIs)/"substantial" thickness items considered "durable" assumed DIs; Stainless items assumed DIsLarge Concrete Items (LCIs) may be DIs; drummed (ungrouted)/"rubbleised" wastes assumed not DIs

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction	On-site	~2.0
Supercompaction (HFC)	Off-site	~2.0
Incineration	Off-site	~7.0
Solidification		
Decontamination		
Metal treatment	Off-site	~70.0
Size reduction		
Decay storage		
Recyling / reuse		
Other / various	Off-site	
None		~21.0

Comment on planned treatments:

70% of this waste stream will be consigned for Metal Recycling and 15% to Landfill as VLLW.

Disposal Routes:

volume % density t/r
Expected to be consigned to the LLW Repository ~8.0 1.4
Expected to be consigned to a Landfill Facility ~15.0 1.4
Expected to be consigned to an On-Site Disposal Facility
Expected to be consigned to an Incineration Facility ~7.0 0.40
Expected to be consigned to a Metal Treatment Facility ~70.0 1.4
Expected to be consigned as Out of Scope
Expected to be recycled / reused
Disposal route not known

Classification codes for waste expected to be consigned to a landfill facility:

17 04 05, 17 04 07, 17 06 01*

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Roule	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Estimated

Baseline Opportunity Stream Date that Opportunity
Management Route Management Route volume (%) will be realised Comment

Waste Packaging for Disposal:

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO			
1/2 Height WAMAC IP-2 ISO	~2.0	43.2	< 1
1/2 Height IP-2 Disposal/Re-usable ISO	~6.0	10	< 1
2m box (no shielding)			
4m box (no shielding)			
Other			

Other information: It is likely that this waste will be placed in a container with other LLW. 43.2m3

loading volume (on the WAMAC container) is calculated based on the fact that you can low force compact two times the normal volume of waste into a 200 litre/0.2m3 drum (400 litres/0.4m3), you can then fit 36 drums (14.4m3) into a $\frac{1}{2}$ height ISO, each drum can be super-compacted to a $\frac{1}{3}$ of its original volume so therefore we can get 3 x the amount of un-compacted drums into the final

disposal container (43.2m3).

Waste Planned for Disposal at the LLW Repository:

Container voidage: No significant inaccessible voidage is expected.

Waste Characterisation

Form (WCH):

The waste meets the LLWR's Waste Acceptance Criteria (WAC).

The waste has a current WCH.

Inventory information is consistent with the current WCH.

Waste consigned for disposal to LLWR in year of generation:

Yes.

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation: -

Bounding cuboidal volume:

Inaccessible voidage: -

Other information:

RADIOACTIVITY

Source: Activity is from fission products, activation products and actinides.

Uncertainty: Specific activity is a function of Station operating history. The values quoted are indicative

of the activities that would be expected.

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

The specific activities have been estimated from waste stream fingerprint data believed to be from 2013 and decayed by 9 years to stock reference date/start date of first arising.

1MXN-1BNL-0-WCH-0-4632 V1

Other information: -

		Mean radioact	ivity, TBq/m³				Mean radioa	ctivity, TBq/m³	
Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code	Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code
H 3	1.06E-05	CC 1	1.06E-05	CC 1	Gd 153		8		8
Be 10		8		8	Ho 163		8		8
C 14	1.14E-06	CC 1	1.14E-06	CC 1	Ho 166m		8		8
Na 22		8		8	Tm 170		8		8
Al 26		8		8	Tm 171		8		8
CI 36		8		8	Lu 174		8		8
Ar 39		8		8	Lu 176		8		8
Ar 42		8		8	Hf 178n		8		8
K 40		8		8	Hf 182		8		8
Ca 41		8		8	Pt 193		8		8
Mn 53		8		8	TI 204		8		8
Mn 54		8		8	Pb 205		8		8
Fe 55	4.36E-08	CC 1	4.36E-08	CC 1	Pb 210		8		8
Co 60	2.53E-07	CC 2	2.53E-07	CC 2	Bi 208		8		8
Ni 59		8		8	Bi 210m		8		8
Ni 63	1.01E-06	CC 1	1.01E-06	CC 1	Po 210		8		8
Zn 65		8		8	Ra 223		8		8
Se 79		8		8	Ra 225		8		8
Kr 81		8		8	Ra 226		8		8
Kr 85		8		8	Ra 228		8		8
Rb 87		8		8	Ac 227		8		8
Sr 90	6.21E-04	CC 1	6.21E-04	CC 1	Th 227		8		8
Zr 93		8		8	Th 228		8		8
Nb 91		8		8	Th 229		8		8
Nb 92		8		8	Th 230		8		8
Nb 93m		8		8	Th 232		8		8
Nb 94		8		8	Th 234		8		8
Mo 93		8		8	Pa 231		8		8
Tc 97		8		8	Pa 233		8		8
Tc 99		8		8	U 232		8		8
Ru 106		8		8	U 233		8		8
Pd 107		8		8	U 234		8		8
Ag 108m		8		8	U 235		8		8
Ag 110m		8		8	U 236		8		8
Cd 109		8		8	U 238		8		8
Cd 113m		8		8	Np 237 Pu 236		8 8		8 8
Sn 119m		8		8	Pu 238	4.11E-06	CC 1	4.11E-06	CC 1
Sn 121m		8		8	Pu 239	8.07E-06	CC 1	8.07E-06	CC 1
Sn 123		8		8	Pu 239 Pu 240	1.06E-05	CC 1	1.06E-05	CC 1
Sn 126 Sb 125		8 8		8 8	Pu 240 Pu 241	1.08E-03	CC 1	1.08E-03 1.08E-04	CC 1
Sb 125 Sb 126		8		8	Pu 241	1.08L-04	8	1.082-04	8
Te 125m		8		8	Am 241	3.71E-05	CC 1	3.71E-05	CC 1
Te 127m		8		8	Am 242m	0.712 00	8	0.7 TE 00	8
I 129		8		8	Am 243		8		8
Cs 134		8		8	Cm 242		8		8
Cs 135		8		8	Cm 243		8		8
Cs 137	3.41E-03	CC 2	3.41E-03	CC 2	Cm 244		8		8
Ba 133]	8	22 00	8	Cm 245		8		8
La 137		8		8	Cm 246		8		8
La 138		8		8	Cm 248		8		8
Ce 144		8		8	Cf 249		8		8
Pm 145		8		8	Cf 250		8		8
Pm 147	2.69E-08	CC 1	2.69E-08	CC 1	Cf 251		8		8
Sm 147		8		8	Cf 252		8		8
Sm 151		8		8	Other a				
Eu 152		8		8	Other b/g				
Eu 154	6.9E-07	CC 2	6.9E-07	CC 2	Total a	5.99E-05	CC 2	5.99E-05	CC 2
Eu 155		8		8	Total b/g	4.15E-03	CC 2	4.15E-03	CC 2
	I	-		-	<u> </u>	i			

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

- 1 Measured activity
- 2 Derived activity (best estimate)
- 3 Derived activity (upper limit)
- 4 Not present
- 5 Present but not significant
- 6 Likely to be present but not assessed
- 7 Present in significant quantities but not determined 8 Not expected to be present in significant quantity