SITE Berkelev SITE OWNER **Nuclear Decommissioning Authority WASTE CUSTODIAN** Magnox Limited LLW **WASTE TYPE** Is the waste subject to No Scottish Policy: **WASTE VOLUMES** Reported At 1.4.2022..... Stocks: $0.2 \, \text{m}^3$ Total future arisings: $0 \, \text{m}^3$ Total waste volume: $0.2 \, \text{m}^3$ Comment on volumes: No further arisings expected. Uncertainty factors on Stock (upper): x 1.1 Arisings (upper) volumes: Stock (lower): x 0.9 Arisings (lower) **WASTE SOURCE** Decontamination and Delicensing of former Low Level Active Facility. PHYSICAL CHARACTERISTICS The stocks are sludge arisings from the clean up and decommissioning of the Low Level General description: Active Facility. The waste is stored in 225 litre mild steel drums. There are no large items. Physical components (%vol): Sludge (~94 wt%) in 225 litre mild Steel containers (~6 wt%). Sealed sources: The waste does not contain sealed sources. Bulk density (t/m3): ~1.5 Comment on density: CHEMICAL COMPOSITION General description and Sludge (~94 wt%) in 225 litre mild Steel containers (~6 wt%). components (%wt): Chemical state: Alkali Chemical form of H-3: Most tritium is expected to be present as water but some may be present in the form of other inorganic compounds or as organic compounds. radionuclides: C-14: Chemical form of carbon 14 has not been determined but may be graphite. U: Chemical form of uranium has not been determined but may be uranium oxides. Pu: Chemical form of plutonium isotopes has not been determined but may be plutonium oxides Metals and alloys (%wt): There are no metal items in the waste. (%wt) Type(s) / Grade(s) with proportions % of total C14 activity Stainless steel..... Other ferrous metals.....~6.0 Iron..... Aluminium...... 0 Beryllium..... Cobalt..... Copper...... 0 Lead...... 0 Magnox/Magnesium..... TR Nickel..... Titanium..... | | Uranium | | | | |----------|----------------------------------|--------------|---|----------------| | | Zinc | 0 | | | | | Zircaloy/Zirconium | . TR | | | | | Other metals | . TR | Unidentified metals may be present in trace quantities. | | | Organics | s (%wt): There may be trace | es of oil an | d grease. | | | | | (%wt) | Type(s) and comment | % of total C14 | | | Total cellulosics | 0 | | activity | | | Paper, cotton | 0 | | | | | Wood | 0 | | | | | Halogenated plastics | 0 | | | | | Total non-halogenated plastics | 0 | | | | | Condensation polymers | 0 | | | | | Others | 0 | | | | | Organic ion exchange materials | NE | | | | | Total rubber | 0 | | | | | Halogenated rubber | 0 | | | | | Non-halogenated rubber | 0 | | | | | Hydrocarbons | | | | | | Oil or grease | | | | | | Fuel | | | | | | Asphalt/Tarmac (cont.coal tar) | | | | | | Asphalt/Tarmac (no coal tar) | | | | | | Bitumen | | | | | | Others | | | | | | Other organics | TR | | | | Other ma | aterials (%wt): - | | | | | | , <i>,</i> | (%wt) | Type(s) and comment | % of total C14 | | | Inorganic ion exchange materials | NE | | activity | | | Inorganic sludges and flocs | ~94.0 | | | | | Soil | 0 | | | | | Brick/Stone/Rubble | 0 | | | | | Cementitious material | NE | | | | | Sand | | | | | | Glass/Ceramics | 0 | | | | | Graphite | TR | | | | | Desiccants/Catalysts | | | | | | Asbestos | 0 | | | | | Non/low friable | - | | | | | Moderately friable | | | | | | Highly friable | | | | | | Free aqueous liquids | 0 | | | | | | | | | | Free non-aqueous liquids | 0 | | |---|-------|---------------------| | Powder/Ash | 0 | | | Inorganic anions (%wt): Not fully assessed. | | | | | (%wt) | Type(s) and comment | | Fluoride | NE | | | Chloride | NE | | | lodide | NE | | | Cyanide | 0 | | | Carbonate | TR | | | Nitrate | NE | | | Nitrite | NE | | | Phosphate | NE | | | Sulphate | TR | | | Sulphide | NE | | | Materials of interest for - waste acceptance criteria: | | | | | (%wt) | Type(s) and comment | | Combustible metals | 0 | | | Low flash point liquids | 0 | | | Explosive materials | 0 | | | Phosphorus | 0 | | | Hydrides | 0 | | | Biological etc. materials | 0 | | | Biodegradable materials | 0 | | | Putrescible wastes | 0 | | | Non-putrescible wastes | | | | Corrosive materials | 0 | | | Pyrophoric materials | 0 | | | Generating toxic gases | 0 | | | Reacting with water | 0 | | | Higher activity particles | | | | Soluble solids as bulk chemical compounds | | | | Hazardous substances / None expected. non hazardous pollutants: | | | | | (%wt) | Type(s) and comment | | Acrylamide | | | | Benzene | | | | Chlorinated solvents | | | | Formaldehyde | | | | Organometallics | | | | Phenol | | | | Styrene | | | | |-----------------------------|--------------------|-------------|---| | Tri-butyl phosphate | | | | | Other organophospha | tes | | | | Vinyl chloride | | | | | Arsenic | | | | | Barium | | | | | Boron | | 0 | | | Boron (in Boral) | | | | | Boron (non-Boral) | | | | | Cadmium | | | | | Caesium | | | | | Selenium | | | | | Chromium | | | | | Molybdenum | | | | | Thallium | | | | | Tin | | | | | Vanadium | | | | | Mercury compounds | | | | | Others | | | | | Electronic Electrical E | Equipment (EEE) | | | | EEE Type 1 | | | | | EEE Type 2 | | | | | EEE Type 3 | | | | | EEE Type 4 | | | | | EEE Type 5 | | | | | Complexing agents (%wt): No | | | | | | | (%wt) | Type(s) and comment | | EDTA | | | | | DPTA | | | | | NTA | | | | | Polycarboxylic acids | | | | | Other organic complex | xants | | | | Total complexing ager | nts | 0 | | | | In & of itself not | t a DI; ass | umed not likely to contain any "rogue" items that | TREATMENT, PACKAGING AND DISPOSAL Planned on-site / off-site treatment(s): | Treatment | On-site /
Off site | Stream volume % | |-----------------------|-----------------------|-----------------| | Low force compaction | | | | Supercompaction (HFC) | | | | Incineration | | | | Solidification | On-site | 100.0 | | Decontamination | | | | Metal treatment | | | | Size reduction | | | | Decay storage | | | | Recyling / reuse | | | | Other / various | | | | None | | | Comment on planned treatments: The waste will be encapsulated in a cement matrix and contained within a HHISO. Any remaining voidage will be filled with grout at LLWR prior to disposal. #### **Disposal Routes:** | Disposal Route | Stream volume % | Disposal density t/m3 | |--|-----------------|-----------------------| | Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known | 100.0 | 2.4 | Classification codes for waste expected to be consigned to a landfill facility: ### Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above): | Disposal Route | Stream volume % | | | | | |--|-----------------|---------|---------|--|--| | Disposal Noute | 2022/23 | 2023/24 | 2024/25 | | | | Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known | | | | | | #### Opportunities for alternative disposal routing: | Baseline
Management Route | Opportunity
Management Route | Stream volume (%) | Estimated Date that Opportunity will be realised | Opportunity
Confidence | Comment | |------------------------------|---------------------------------|-------------------|--|---------------------------|---------| | - | | | Will be realised | | | ### Waste Packaging for Disposal: | Container | Stream volume % | Waste loading m ³ | Number of packages | |--|-----------------|------------------------------|--------------------| | 1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other | 100.0 | ~7.2 | < 1 | Other information: It is likely that this waste will be encapsulated with other sludge arisings in the same containers. Other solid LLW items may be added as well. Waste Planned for Disposal at the LLW Repository: Container voidage: No significant inaccessible voidage is present. Waste Characterisation Form (WCH): The waste meets the LLWR's Waste Acceptance Criteria (WAC). The waste does not have a current WCH. Waste consigned for disposal to LLWR in year of generation: No. The waste is held in a raw state in drums and will be conditioned prior to disposal. Processing of the waste will be under taken as part of a sludge encapsulation campaign. The waste was not consigned in the year of generation, as treatment facilities were not available at that time. Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream) Stream volume (%): Waste stream variation: - Bounding cuboidal volume: Inaccessible voidage: - Other information: **RADIOACTIVITY** Source: The majority of activity is associated with the decommissioning of the ponds. Caesium 137 will be the major radionuclide. Uncertainty: - Definition of total alpha and total beta/gamma: Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'. Measurement of radioactivities: Currently awaiting characterisation. Will be estimated using a radionuclide fingerprint for ponds area waste. Other information: | | Mean radioactivity, TBq/m³ | | | | Mean radioactivity, TBq/m³ | | | | | |---------|----------------------------|-------------------|-----------------|-------------------|----------------------------|----------|-------------------|-----------------|-------------------| | Nuclide | Waste at | Bands and
Code | Future arisings | Bands and
Code | Nuclide | Waste at | Bands and
Code | Future arisings | Bands and
Code | | H 3 | 1.4.2022 | Code | ansings | Code | Gd 153 | 1.4.2022 | Code | ansings | Code | | Be 10 | | | | | Ho 163 | | | | | | C 14 | | | | | Ho 166m | | | | | | Na 22 | | | | | Tm 170 | | | | | | Al 26 | | | | | Tm 170 | | | | | | Cl 36 | | | | | Lu 174 | | | | | | Ar 39 | | | | | Lu 174
Lu 176 | | | | | | Ar 42 | | | | | Hf 178n | | | | | | K 40 | | | | | Hf 182 | | | | | | Ca 41 | | | | | Pt 193 | | | | | | Mn 53 | | | | | TI 204 | | | | | | Mn 54 | | | | | Pb 205 | | | | | | Fe 55 | | | | | Pb 210 | | | | | | Co 60 | | | | | Bi 208 | | | | | | Ni 59 | | | | | Bi 210m | | | | | | Ni 63 | | | | | Po 210 | | | | | | Zn 65 | | | | | Ra 223 | | | | | | Se 79 | | | | | Ra 225 | | | | | | Kr 81 | | | | | Ra 226 | | | | | | Kr 85 | | | | | Ra 228 | | | | | | Rb 87 | | | | | Ac 227 | | | | | | Sr 90 | | | | | Th 227 | | | | | | Zr 93 | | | | | Th 228 | | | | | | Nb 91 | | | | | Th 229 | | | | | | Nb 92 | | | | | Th 230 | | | | | | Nb 93m | | | | | Th 232 | | | | | | Nb 94 | | | | | Th 234 | | | | | | Mo 93 | | | | | Pa 231 | | | | | | Tc 97 | | | | | Pa 233 | | | | | | Tc 99 | | | | | U 232 | | | | | | Ru 106 | | | | | U 233 | | | | | | Pd 107 | | | | | U 234 | | | | | | Ag 108m | | | | | U 235 | | | | | | Ag 110m | | | | | U 236 | | | | | | Cd 109 | | | | | U 238 | | | | | | Cd 113m | | | | | Np 237 | | | | | | Sn 119m | | | | | Pu 236 | | | | | | Sn 121m | | | | | Pu 238 | | | | | | Sn 123 | | | | | Pu 239 | | | | | | Sn 126 | | | | | Pu 240 | | | | | | Sb 125 | | | | | Pu 241 | | | | | | Sb 126 | | | | | Pu 242 | | | | | | Te 125m | | | | | Am 241 | | | | | | Te 127m | | | | | Am 242m | | | | | | I 129 | | | | | Am 243 | | | | | | Cs 134 | | | | | Cm 242 | | | | | | Cs 135 | | | | | Cm 243 | | | | | | Cs 137 | | 6 | | | Cm 244 | | | | | | Ba 133 | | - | | | Cm 245 | | | | | | La 137 | | | | | Cm 246 | | | | | | La 138 | | | | | Cm 248 | | | | | | Ce 144 | | | | | Cf 249 | | | | | | Pm 145 | | | | | Cf 250 | | | | | | Pm 147 | | | | | Cf 251 | | | | | | Sm 147 | | | | | Cf 252 | | | | | | Sm 151 | | | | | Other a | | | | | | Eu 152 | | | | | Other b/g | | | | | | Eu 154 | | | | | Total a | NE | | 0 | | | Eu 155 | | | | | Total b/g | NE | | 0 | | | | Inner and Low | | 1 | | Code | i | | i | | #### Bands (Upper and Lower) A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000 Note: Bands quantify uncertainty in mean radioactivity. #### Code - Measured activity Derived activity (best estimate) Derived activity (upper limit) - 4 Not present 5 Present but not significant 6 Likely to be present but not assessed 7 Present in significant quantities but not determined 8 Not expected to be present in significant quantity