SITE	Bradwell				
SITE OWNER	Nuclear Decomn	Nuclear Decommissioning Authority			
WASTE CUSTODIAN	Magnox Limited	Magnox Limited			
WASTE TYPE	LLW				
Is the waste subject to Scottish Policy:	No				
WASTE VOLUMES			Reported		
Stocks:	At 1.4.2022		274.0 m³		
Total future arisings:			0 m³		
Total waste volume:			274.0 m ³		
Comment on volumes:	The current stoc on a known quar	k held at Tradebe av ntity of drums so unc	vaiting super ertainty is lo	compaction and or w.	nward disposal is based
Uncertainty factors on	Stock (upper):	x 1.1		Arisings (upper)	х
volumes:	Stock (lower):	x 0.9		Arisings (lower)	х
WASTE SOURCE	The stream cove from the Active V Gravels/Oxide re	ers a mixture of Grav Waste Compound Va etrieved from Vaults	el, Oxide and aults 0B, 1A, 7A, 7B & 8A.	d Fuel Element De 1B, 2A, 2B, 4A, 4I	bris (FED) retrieved 3 & 5A; and

PHYSICAL CHARACTERISTICS

General description:	FED, gravel and interface. As the materials were retrieved from the vaults, they were sorted into either FED, Gravel or Interface drums. The interface drums arose when the project could no longer separate the FED from the Gravel and so each interface drum consists of a mixture of both FED, Gravel along with some oxides. Best efforts have been made to ensure that the drums do not contain High Dose Rate Items (HDRI), such as nimonic springs or fuel.
Physical components (%)	ol): Metal (86%), gravel (12%), plastics (1%) and a notional 1% has been included to account for the secondary PPE and filter waste from supercompaction.
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	0.63
Comment on density:	The bulk density is based on the stock of 172.8te with a raw volume of 274m3 taken from the draft WCH for disposal. Following supercompaction this will increase to 1.62t/m3

CHEMICAL COMPOSITION

General description and components (%wt):	Magnox metal (type ZR55) (>60%), fission product and actinide contamination. The potential corrosion products present are detailed in the section above. The quantities/ratios of each potential corrosion product is currently unknown. The chemical composition of the chippings is not known. It is likely that either silica or limestone has been used. Fission products, actinides and other activation products will be present as contaminants.
Chemical state:	Neutral
Chemical form of radionuclides:	 H-3: Tritium is expected to be present as surface contamination possibly as water but perhaps in the form of other inorganic compounds or as organic compounds. C-14: Carbon 14 will probably be present as graphite. Cl-36: Chlorine 36 incorporated in the Magnox may be associated with barium impurity (BaCl2). Other chlorine 36 may be associated with surface contamination. U: Chemical form of U isotopes has not been determined but may be oxides. Np: The chemical form of Pu isotopes has not been determined but may be oxides.
Metals and alloys (%wt):	The thickness of some of the waste will be of the order of a mm or less.

WASTE STREAM

M 9B21

FED Magnox, Gravel and Interface

		(%wt)	Type(s) / Grade(s) with proportions	% of total C14
	Stainless steel	0		
	Other ferrous metals	15.4	FED Drum / filter body	
	Iron	0.33	FED Alloy	
	Aluminium	0.45	FED Alloy	
	Beryllium	0		
	Cobalt	TR	FED Alloy	
	Copper	0.01	FED Alloy	
	Lead	0.05	FED Alloy	
	Magnox/Magnesium	70.1	FED Alloy	
	Nickel	0.01	FED Alloy	
	Titanium	TR	FED Alloy	
	Uranium			
	Zinc	0.02	FED Alloy	
	Zircaloy/Zirconium	0.03	FED Alloy	
	Other metals	0		
Organics (%)	vt): -			
		(%wt)	Type(s) and comment	% of total C14
	Total cellulosics	0		activity
	Paper, cotton	0		
	Wood	0		
	Halogenated plastics	0		
	Total non-halogenated plastics	0.58		
	Condensation polymers	0.58	Plastic wrapping / PPE	
	Others	0		
	Organic ion exchange materials	0		
	Total rubber	0		
	Halogenated rubber	0		
	Non-halogenated rubber	0		
	Hydrocarbons			
	Oil or grease			
	Fuel			
	Asphalt/Tarmac (cont.coal tar)			
	Asphalt/Tarmac (no coal tar)			
	Bitumen			
	Others			
	Other organics			

Other materials (%wt):

-

WASTE STREAM 9B21 FED Magnox, Gravel and Interface

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	0		
Inorganic sludges and flocs	NE		
Soil	0		
Brick/Stone/Rubble	12.0	Gravel	
Cementitious material	0		
Sand			
Glass/Ceramics	0		
Graphite	TR		
Desiccants/Catalysts			
Asbestos	0		
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids			
Free non-aqueous liquids	0		
Powder/Ash			

Inorganic anions (%wt):

The inorganic anion content of the gravel has not been fully assessed.

Type(s) and comment

(%wt)

Fluoride	0
Chloride	TR
lodide	0
Cyanide	0
Carbonate	TR
Nitrate	TR
Nitrite	TR
Phosphate	TR
Sulphate	TR
Sulphide	0

Materials of interest for Magnox will ignite under appropriate conditions.

waste acceptance criteria:

(%wt) Type(s) and comment

Combustible metals	
Low flash point liquids	0
Explosive materials	0
Phosphorus	0
Hydrides	0
Biological etc. materials	0
Biodegradable materials	0
Putrescible wastes	0
Non-putrescible wastes	

WASTE STREAM 9B21 FED Magnox, Gravel and Interface

Corrosive materials	0	
Pyrophoric materials	0	
Generating toxic gases	0	
Reacting with water	Р	1491.8m2
Higher activity particles		
Soluble solids as bulk chemical compounds		

Hazardous substances /
non hazardous pollutants:Polyurathane foam contained within mild steel FED drum filters (0.03%), Also included in
the FED alloy - calcium (0.28%), manganese (0.01%), neodymium (0.10%), silicon (0.02%).

	(%wt)	Type(s) and comment
Acrylamide		
Benzene		
Chlorinated solvents		
Formaldehyde		
Organometallics		
Phenol		
Styrene		
Tri-butyl phosphate		
Other organophosphates		
Vinyl chloride		
Arsenic		
Barium		
Boron	0	
Boron (in Boral)		
Boron (non-Boral)		
Cadmium	TR	FED Alloy
Caesium		
Selenium		
Chromium	0.01	FED Alloy
Molybdenum		
Thallium		
Tin		
Vanadium		
Mercury compounds		
Others	0.44	Polyurathane foam contained within mild steel FED drum filters (0.03%), Also included in the FED alloy - calcium (0.28%), manganese (0.01%), neodymium (0.10%), silicon (0.02%)
Electronic Electrical Equipment (EEE)		
EEE Type 1		

2022 Inventory

EEE Type 2..... EEE Type 3.... EEE Type 4.... EEE Type 5.... 9B21

FED Magnox, Gravel and Interface

Complexing agents (%wt): No

		(%wt)	Type(s) and comment	
EDTA				
DPTA				
NTA				
Polycarboxylic ac	ds			
Other organic con	nplexants			
Total complexing	agents	0		
Potential for the waste to	No. In & of itself no	ot a DI - un	-grouted, compacted drums assume	ed to not be

contain discrete items:

Dls

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):	Treatment	On-sit Off s	te / ite	Stream volume %
	Low force compaction			
	Supercompaction (HFC)	Off-	site	96.2
	Incineration	Off-	site	3.8
	Solidification			
	Decontamination			
	Metal treatment			
	Size reduction			
	Decay storage			
	Recyling / reuse			
	Other / various			
	None			100.0
Comment on planned treatments:	The waste will be supercompacted prior to dispose efficiency in the disposal container.	al to increa	ase the p	packing
Disposal Poutos:	Disposal Poute		Stream	Disposal

Disposal	Routes:

Disposal Route	Stream	Disposal
	volume %	density t/m3
Expected to be consigned to the LLW Repository	96.2	1.6
Expected to be consigned to a Landfill Facility		
Expected to be consigned to an On-Site Disposal Facility		
Expected to be consigned to an Incineration Facility	3.8	0.40
Expected to be consigned to a Metal Treatment Facility		
Expected to be consigned as Out of Scope		
Expected to be recycled / reused		
Disposal route not known		

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

-

Disposal Route	Stream volume %				
	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

9B21

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	-	-	-	-	-

-

Waste Packaging for Disposal:

Container	Stream volume	Waste loading	Number of	
	%	m ³	packages	
 1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other 	96.2	25.7	11	

Other information:

Raw waste volume is assumed to reduce by factor of 0.39 upon supercompaction. Assuming standard 10m3 per HHISO for disposal of compacted waste this equates to 25.7m3 of raw waste volume per container.

Waste Planned for Disposal at the LLW Repository:

Container voidage:	-
Waste Characterisation Form (WCH):	The waste meets the LLWR's Waste Acceptance Criteria (WAC). The waste does not have a current WCH.
Waste consigned for disposal to LLWR in year of generation:	No. Waste was consigned from Bradwell site in 2018 to be supercompacted and disposed of to LLWR and as a result was not included in RWI 2019. Delays with the supercompaction and disposal from the treatment site mean that it is to be included again in the 2022 RWI whilst this work completes.

Non-Containerised Waste for	In-Vault Grouting: (Not applicable to this waste stream)
Stream volume (%):	-
Waste stream variation:	-
Bounding cuboidal volume:	
Inaccessible voidage:	-
Other information:	-
RADIOACTIVITY	
Source:	The source of the waste is the removal of splitters from fuel elements prior to dispatch of the elements for reprocessing. Activation of trace elements in the Magnox and contamination by fission products and actinides will be the main sources of activity.
Uncertainty:	The values quoted are indicative of the activities that might be expected.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	Values were derived from measurements, calculations of induced activity and estimates of likely contamination. A campaign of sampling was undertaken during the retrieval of the material. Values above are based on WCH for LLWR ref 1MXN-3BRA-0-WCH-L-3775 V13 decayed 6 years for RWI 2022
Other information:	-

WASTE STREAM 9B21 FED Magnox, Gravel and Interface

	Mean radioactivity, TBg/m ³			Mean radioactivity, TBg/m ³					
	Waste at	Bands and	Future	Bands and		Waste at	Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code
H 3	3.40E-03	CC 1			Gd 153		8		
Be 10		8			Ho 163		8		
C 14	8.17E-05	CC 1			Ho 166m		8		
Na 22		8			Tm 170		8		
AI 26		8			Tm 171		8		
CI 36	8E-06	CC 2			Lu 174		8		
Ar 39		8			Lu 176		8		
Ar 42		8			Hf 178n		8		
K 40		8			Ht 182		8		
Ca 41		8			Pt 193		8		
IVIN 53		8			11 204 Db 205		8		
		0			PD 205		8		
	2.29E-05				PD 210		0		
Ni 50	0.01E-05				Bi 210m		0		
Ni 63	8 64E 04				Bi 21011 Bo 210		0		
7n 65	0.042-04	8			P0210 Ra 223		0 8		
Se 79		8			Ra 225		8		
Kr 81		о 8			Ra 226		R R		
Kr 85		8			Ra 228		8		
Rb 87		8			Ac 227		8		
Sr 90	3.73E-04	CC 1			Th 227		8		
Zr 93	01102 01	8			Th 228		8		
Nb 91		8			Th 229		8		
Nb 92		8			Th 230		8		
Nb 93m		8			Th 232		8		
Nb 94		8			Th 234	1.46E-09	CC 2		
Mo 93		8			Pa 231		8		
Tc 97		8			Pa 233		8		
Tc 99		8			U 232		8		
Ru 106		8			U 233		8		
Pd 107		8			U 234	2.06E-09	CC 2		
Ag 108m	9.07E-05	CC 2			U 235		8		
Ag 110m		8			U 236		8		
Cd 109		8			U 238	1.46E-09	CC 2		
Cd 113m		8			Np 237		8		
Sn 119m		8			Pu 236		8		
Sn 121m		8			Pu 238	4.28E-05	CC 1		
Sn 123		8			Pu 239	8.44E-05	CC 1		
Sn 126		8			Pu 240	8.75E-05			
Sb 125		8			Pu 241	6.62E-04			
SD 126		8			Pu 242	0.475.04	8		
Te 125m		8			Am 241	3.47E-04			
10 12/11		8			Am 242m		8		
1 129 Cc 134		0			AIII 243		0		
Cs 135		0 8			Cm 242	2 29E-07			
Cs 137	4 16E-05	CC 2			Cm 244	1.69E-07			
Ba 133	1 1E-06	CC 2			Cm 245	1.052 07	8		
La 137		8			Cm 246		8		
La 138		8			Cm 248		8		
Ce 144		8			Cf 249		8		
Pm 145		8			Cf 250		8		
Pm 147	1E-07	CC 1			Cf 251		8		
Sm 147		8			Cf 252		8		
Sm 151	2.35E-06	CC 2			Other a				
Eu 152	2.4E-07	CC 2			Other b/g				
Eu 154	2.25E-06	CC 2			Total a	5.62E-04	CC 2	0	
Eu 155	9.42E-07	CC 2			Total b/g	5.63E-03	CC 2	0	

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity
 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity

8 Not expected to be present in significant quantity