WASTE STREAM 9B315 Mild Steel (Non-Reactor) LLW SITE Bradwell SITE OWNER **Nuclear Decommissioning Authority** **WASTE CUSTODIAN** Magnox Limited LLW **WASTE TYPE** Is the waste subject to Scottish Policy: No **WASTE VOLUMES** Reported At 1.4.2022..... Stocks: $0 \, \text{m}^3$ 1.4.2087 - 31.3.2090...... Future arisings -3404.0 m³ Total future arisings: 3404.0 m³ Total waste volume: 3404.0 m³ Comment on volumes: Final Dismantling & Site Clearance is assumed to commence in 2083 with reactor dismantling commencing in 2087 and lasting for three years. Volumes and radioactivity have been calculated for 85 years after reactor shutdown, i.e. 2087. Uncertainty factors on Stock (upper): volumes: Stock (lower): Arisings (upper) x 1.2 Arisings (lower) x 0.8 **WASTE SOURCE** Mild steel items from the boilers and the reactor ancillary plant. #### PHYSICAL CHARACTERISTICS General description: A variety of mild steel items. Physical components (%wt): Mild steel items (100%). Sealed sources: The waste does not contain sealed sources. Bulk density (t/m3): ~1.4 Comment on density: The density is of the waste as cut for packaging. #### CHEMICAL COMPOSITION General description and components (%wt): Mild steel (100%). Composition is >98% iron Chemical state: Neutral Chemical form of H-3: The tritium is incorporated in the steel. radionuclides: C-14: The carbon 14 is incorporated in the steel. There also may be some contamination as graphite. CI-36: The chlorine 36 is incorporated in the steel. Metals and alloys (%wt): All of the waste will be bulk metal items which have been cut for packaging. Metal thicknesses will probably range from a few mm to about 100 mm. (%wt) Type(s) / Grade(s) with proportions % of total C14 activity Stainless steel..... Other ferrous metals..... 100.0 All of the waste included in this 100.0 waste stream is mild steel including BS 970 EN2/3 Iron..... Aluminium...... 0 Beryllium..... Cobalt..... Greatest measured value from the ~0.01 various components. Copper...... 0 Lead...... 0 Magnox/Magnesium..... 0 # WASTE STREAM 9B315 Mild Steel (Non-Reactor) LLW | | Nickel | . ~0.07 | Greatest measured value from the various components. | | |--------------|----------------------------------|-----------|--|-------------------------| | | Titanium | - | | | | | Uranium | • | | | | | Zinc | . 0 | | | | | Zircaloy/Zirconium | . 0 | | | | | Other metals | . TR | Silver and niobium | | | Organics (% | wt): None expected. | | | | | | | (%wt) | Type(s) and comment | % of total C14 | | | Total cellulosics | 0 | | activity | | | Paper, cotton | 0 | | | | | Wood | 0 | | | | | Halogenated plastics | 0 | | | | | Total non-halogenated plastics | 0 | | | | | Condensation polymers | 0 | | | | | Others | 0 | | | | | Organic ion exchange materials | 0 | | | | | Total rubber | 0 | | | | | Halogenated rubber | 0 | | | | | Non-halogenated rubber | 0 | | | | | Hydrocarbons | | | | | | Oil or grease | | | | | | Fuel | | | | | | Asphalt/Tarmac (cont.coal tar) | | | | | | Asphalt/Tarmac (no coal tar) | | | | | | Bitumen | | | | | | Others | | | | | | Other organics | 0 | | | | Other materi | als (%wt): Traces of graphite | expected. | | | | | | • | T | 0/ -64-4-1-044 | | | | (%wt) | Type(s) and comment | % of total C14 activity | | | Inorganic ion exchange materials | 0 | | | | | Inorganic sludges and flocs | 0 | | | | | Soil | 0 | | | | | Brick/Stone/Rubble | 0 | | | | | Cementitious material | 0 | | | | | Sand | | | | | | Glass/Ceramics | 0 | | | | | Graphite | TR | | | | | Desiccants/Catalysts | | | | | | Asbestos | 0 | | | | | Non/low friable | | | | | | Moderately friable | | | | # WASTE STREAM 9B315 Mild Steel (Non-Reactor) LLW | Highly friable | | | | | |---|------------------------|--------------|---|----| | Free aqueous liqu | ıids | 0 | | | | Free non-aqueous | s liquids | 0 | | | | Powder/Ash | | 0 | | | | Inorganic anions (%wt): | - | | | | | | | (%wt) | Type(s) and comment | | | | | | 7, 100, 200 | | | Fluoride | | 0 | | | | Chloride | | TR | | | | lodide | | 0 | | | | Cyanide | | 0 | | | | Carbonate | | 0 | | | | Nitrate | | 0 | | | | Nitrite | | 0 | | | | Phosphate | | 0 | | | | Sulphate | | 0 | | | | Sulphide | | 0 | | | | Materials of interest for waste acceptance criteria: | No materials likely to | o pose a fii | re or other non-radiological hazard have been identifie | d. | | · | | (%wt) | Type(s) and comment | | | Combustible meta | ale. | | Typo(o) and common | | | | | 0 | | | | Low flash point lic | | 0 | | | | Explosive materia | | 0 | | | | Phosphorus | | 0 | | | | Hydrides | | 0 | | | | Biological etc. ma | | 0 | | | | Biodegradable ma | | 0 | | | | | stes | 0 | | | | Corrosive materia | wastes | 0 | | | | Pyrophoric materia | | 0 | | | | | | | | | | Generating toxic (| | 0 | | | | Reacting with wat | | U | | | | Higher activity par
Soluble solids as
compounds | bulk chemical | | | | | • | None expected | | | | | • | | (%wt) | Type(s) and comment | | | Acrylamide | | () | | | | Benzene | | | | | | Chlorinated solve | | | | | | Formaldehyde | | | | | #### **WASTE STREAM** Mild Steel (Non-Reactor) LLW 9B315 | | Organometallics | | | | |-----------------|---------------------------------------|------------|--------------------------------|-------------| | | Phenol | | | | | | Styrene | | | | | | Tri-butyl phosphate | | | | | | Other organophosphates | | | | | | Vinyl chloride | | | | | | Arsenic | | | | | | Barium | | | | | | Boron | | | | | | Boron (in Boral) | | | | | | Boron (non-Boral) | | | | | | Cadmium | | | | | | Caesium | | | | | | Selenium | | | | | | Chromium | | | | | | Molybdenum | TR | | | | | Thallium | | | | | | Tin | | | | | | Vanadium | | | | | | Mercury compounds | | | | | | Others | | | | | | Electronic Electrical Equipment (EEE) | | | | | | EEE Type 1 | | | | | | EEE Type 2 | | | | | | EEE Type 3 | | | | | | EEE Type 4 | | | | | | EEE Type 5 | | | | | Complexing | agents (%wt): Yes | | | | | | | (%wt) | Type(s) and comment | | | | EDTA | | | | | | DPTA | | | | | | NTA | | | | | | Polycarboxylic acids | | | | | | Other organic complexants | | | | | | Total complexing agents | TR | | | | Potential for t | he waste to Ves I arge Metal Ite | ome (I Mie | \/"cubstantial" thickness item | o considere | Potential for the waste to contain discrete items: Yes. Large Metal Items (LMIs)/"substantial" thickness items considered "durable" assumed DIs. NB If recycled then DI Limits $\rm n/a$ # TREATMENT, PACKAGING AND DISPOSAL # WASTE STREAM 9B315 Mild Steel (Non-Reactor) LLW Planned on-site / off-site treatment(s): | Treatment | On-site /
Off site | Stream volume % | |-----------------------|-----------------------|-----------------| | Low force compaction | | | | Supercompaction (HFC) | | | | Incineration | | | | Solidification | | | | Decontamination | | | | Metal treatment | | | | Size reduction | | | | Decay storage | | | | Recyling / reuse | | | | Other / various | | | | None | | 100.0 | Comment on planned treatments: 100% of the waste expected to go to landfill ### **Disposal Routes:** | Disposal Route | Stream volume % | Disposal
density t/m3 | |--|-----------------|--------------------------| | Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known | 100.0 | 1.4 | Classification codes for waste expected to be consigned to a landfill facility: 17 04 05 # Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above): | Disposal Route | Stream volume % | | | | | |--|-----------------|---------|---------|--|--| | Disposal Noute | 2022/23 | 2023/24 | 2024/25 | | | | Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known | | | | | | ## Opportunities for alternative disposal routing: | Opportunity | Opportunity Confidence Comment | |-------------|--------------------------------| |-------------|--------------------------------| Waste Packaging for Disposal: (Not applicable to this waste stream) #### **WASTE STREAM** 9B315 Mild Steel (Non-Reactor) LLW | Container | Stream volume % | Waste loading m ³ | Number of packages | |--|-----------------|------------------------------|--------------------| | 1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) | | | . 0 | | 4m box (no shielding) Other | | | | Other information: Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream) Container voidage: Waste Characterisation Form (WCH): Waste consigned for disposal to LLWR in year of generation: **Non-Containerised Waste for In-Vault Grouting:** (Not applicable to this waste stream) Stream volume (%): Waste stream variation: Bounding cuboidal volume: Inaccessible voidage: Other information: **RADIOACTIVITY** Source: Contamination, and activation of the mild steel and its impurities. Uncertainty: The values quoted were derived by calculation from available data and are indicative of the activities that are to be expected. Definition of total alpha and total beta/gamma: Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'. The specific activities were estimated from gamma spectrometry measurements in the Measurement of radioactivities: boilers. Other information: The activities quoted are those at 85 years after reactor shutdown, i.e. in 2087. There may be some contamination by Cs137. #### **WASTE STREAM** 9B315 Mild Steel (Non-Reactor) LLW | | Mean radioactivity, TBq/m³ | | | | Mean radioactivity, TBq/m³ | | | | | |---------|----------------------------|-------------------|--------------------|-------------------|----------------------------|----------------------|-------------------|--------------------|-------------------| | Nuclide | Waste at 1.4.2022 | Bands and
Code | Future
arisings | Bands and
Code | Nuclide | Waste at
1.4.2022 | Bands and
Code | Future
arisings | Bands and
Code | | H 3 | | | 3.9E-07 | CC 2 | Gd 153 | | | | 8 | | Be 10 | | | | 8 | Ho 163 | | | | 8 | | C 14 | | | 3.9E-06 | CC 2 | Ho 166m | | | <2.8E-08 | C 3 | | Na 22 | | | | 8 | Tm 170 | | | | 8 | | Al 26 | | | | 8 | Tm 171 | | | | 8 | | CI 36 | | | 3.9E-07 | CC 2 | Lu 174 | | | | 8 | | Ar 39 | | | | 8 | Lu 176 | | | | 8 | | Ar 42 | | | | 8 | Hf 178n | | | | 8 | | K 40 | | | | 8 | Hf 182 | | | | 8 | | Ca 41 | | | 1.2E-08 | CC 2 | Pt 193 | | | | 8 | | Mn 53 | | | | 8 | TI 204 | | | | 8 | | Mn 54 | | | | 8 | Pb 205 | | | | 8 | | Fe 55 | | | | 8 | Pb 210 | | | | 8 | | Co 60 | | | | 8 | Bi 208 | | | | 8 | | Ni 59 | | | 1.2E-07 | CC 2 | Bi 210m | | | | 8 | | Ni 63 | | | 7.9E-06 | CC 2 | Po 210 | | | | 8 | | Zn 65 | | | | 8 | Ra 223 | | | | 8 | | Se 79 | | | | 8 | Ra 225 | | | | 8 | | Kr 81 | | | | 8 | Ra 226 | | | | 8 | | Kr 85 | | | | 8 | Ra 228 | | | | 8 | | Rb 87 | | | | 8 | Ac 227 | | | | 8 | | Sr 90 | | | 2.4E-08 | CC 2 | Th 227 | | | | 8 | | Zr 93 | | | | 8 | Th 228 | | | | 8 | | Nb 91 | | | | 8 | Th 229 | | | | 8 | | Nb 92 | | | | 8 | Th 230 | | | | 8 | | Nb 93m | | | | 8 | Th 232 | | | | 8 | | Nb 94 | | | <1.6E-08 | C 3 | Th 234 | | | | 8 | | Mo 93 | | | | 8 | Pa 231 | | | | 8 | | Tc 97 | | | | 8 | Pa 233 | | | | 8 | | Tc 99 | | | | 8 | U 232 | | | | 8 | | Ru 106 | | | | 8 | U 233 | | | | 8 | | Pd 107 | | | | 8 | U 234 | | | | 8 | | Ag 108m | | | 2.4E-08 | CC 2 | U 235 | | | | 8 | | Ag 110m | | | | 8 | U 236 | | | | 8 | | Cd 109 | | | | 8 | U 238 | | | | 8 | | Cd 113m | | | | 8 | Np 237 | | | | 8 | | Sn 119m | | | | 8 | Pu 236 | | | | 8 | | Sn 121m | | | | 8 | Pu 238 | | | | 8 | | Sn 123 | | | | 8 | Pu 239 | | | | 8 | | Sn 126 | | | | 8 | Pu 240 | | | | 8 | | Sb 125 | | | | 8 | Pu 241 | | | | 8 | | Sb 126 | | | | 8 | Pu 242 | | | | 8 | | Te 125m | | | | 8 | Am 241 | | | 1.6E-09 | CC 2 | | Te 127m | | | | 8 | Am 242m | | | | 8 | | I 129 | | | | 8 | Am 243 | | | | 8 | | Cs 134 | | | | 8 | Cm 242 | | | | 8 | | Cs 135 | | | | 8 | Cm 243 | | | | 8 | | Cs 137 | | | 2E-08 | CC 2 | Cm 244 | | | | 8 | | Ba 133 | | | | 8 | Cm 245 | | | | 8 | | La 137 | | | | 8 | Cm 246 | | | | 8 | | La 138 | | | | 8 | Cm 248 | | | | 8 | | Ce 144 | | | | 8 | Cf 249 | | | | 8 | | Pm 145 | | | | 8 | Cf 250 | | | | 8 | | Pm 147 | | | | 8 | Cf 251 | | | | 8 | | Sm 147 | | | | 8 | Cf 252 | | | | 8 | | Sm 151 | | | | 8 | Other a | | | | | | Eu 152 | | | | 8 | Other b/g | | | | | | Eu 154 | | | | 8 | Total a | 0 | | 1.6E-09 | CC 2 | | Eu 155 | | | | 8 | Total b/g | 0 | | 1.28E-05 | CC 2 | | | 1 | | | | | | j | | | ### Bands (Upper and Lower) A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000 Note: Bands quantify uncertainty in mean radioactivity. ### Code - 1 Measured activity - 2 Derived activity (best estimate) 3 Derived activity (upper limit) - 4 Not present - 5 Present but not significant - 7 Present in significant duantities but not determined 8 Not expected to be present in significant quantity