SITE Dungeness A

SITE OWNER **Nuclear Decommissioning Authority**

WASTE CUSTODIAN Magnox Limited

LLW **WASTE TYPE**

Is the waste subject to

Scottish Policy:

Nο

WASTE VOLUMES

Reported At 1.4.2022..... Stocks: $0 \, \text{m}^3$ 1.4.2092 - 31.3.2095...... Future arisings -159.0 m³ Total future arisings: 159.0 m³ Total waste volume: 159.0 m³

Comment on volumes: For inventory purposes the arisings are assumed to arise at a uniform rate over three years.

Final Dismantling & Site Clearance is assumed to commence in 2088 with reactor dismantling commencing in 2092 and lasting for 3 years. The volumes and radioactivity

have been calculated for 85 years after reactor shutdown, i.e. 2091.

Uncertainty factors on

Stock (upper): volumes: Stock (lower):

Arisings (upper) x 1.2

Arisings (lower) x 0.8

WASTE SOURCE

A variety of materials from plant dismantling.

PHYSICAL CHARACTERISTICS

General description: A variety of materials including metals. Waste can be packaged in standard LLW

packages.

Physical components (%vol): A variety of constituents including metallic items (~5%), temporary active drains (~57%)

and vacuum clean and washdown items (~38%).

Sealed sources: The waste does not contain sealed sources.

Bulk density (t/m3):

Comment on density: The density is of the waste as prepared for packaging.

CHEMICAL COMPOSITION

General description and components (%wt):

A variety of materials including metals.

Chemical state: Neutral

Chemical form of

H-3: The chemical form of tritium has not been assessed.

radionuclides: C-14: The chemical form of carbon 14 has not been assessed but may be graphite.

CI-36: The chemical form of chlorine 36 has not been assessed.

Se-79: The selenium content is insignificant. Tc-99: The technetium content is insignificant. Ra: The radium content is insignificant. Th: The thorium content is insignificant. U: The uranium content is insignificant. Np: The neptunium content is insignificant. Pu: The plutonium content is insignificant.

Metals and alloys (%wt): Items will have been cut for packaging but an assessment of item dimensions has not

been made.

(%wt) Type(s) / Grade(s) with proportions % of total C14 activity Stainless steel.....

Other ferrous metals..... ~5.0

Mild steel and a little aluminium will

be included.

Iron.

Aluminium...... NE Beryllium..... 0

Cabalt				
		•		
		_		
	nesium			
Titanium				
Uranium				
Zinc		0		
Zircaloy/Zirco	onium	0		
Other metals		0		
Organics (%wt):	Plastics may be exp have not been estin		logenated rubbers are not expected.	Halogenated plastics
		(%wt)	Type(s) and comment	% of total C14 activity
	sics	~0		
Paper, cott	ton	0		
		0		
	plastics	NE		
	logenated plastics	NE		
Condensat	tion polymers	NE		
Others		NE		
Organic ion e	exchange materials	0		
Total rubber.		0		
Halogenate	ed rubber	0		
Non-halogo	enated rubber	0		
Hydrocarbon	S			
Oil or grea	se			
Fuel				
Asphalt/Ta	rmac (cont.coal tar)			
Asphalt/Ta	rmac (no coal tar)			
Bitumen				
Others				
Other organic	CS	0		
Other materials (%wt):	There might be trac	es of grap	hite.	
		(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion	exchange materials	0		
Inorganic slu	dges and flocs	38.0	vacuum clean and washdown items	
Soil		0		
Brick/Stone/F	Rubble	0		
Cementitious	material	57.0	temporary active drains	
Sand				
Glass/Ceram	nics	0		

Graphite	0	
Desiccants/Catalysts		
Asbestos		
Non/low friable		
Moderately friable		
Highly friable		
Free aqueous liquids	0	
Free non-aqueous liquids	0	
Powder/Ash	0	
Inorganic anions (%wt):		
	(%wt)	Type(s) and comment
Fluoride	0	
Chloride	0	
lodide	0	
Cyanide	0	
Carbonate	0	
Nitrate	0	
Nitrite	0	
Phosphate	0	
Sulphate	0	
Sulphide	0	
Materials of interest for -		
waste acceptance criteria:		
	(%wt)	Type(s) and comment
Combustible metals	0	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	0	
Hydrides	0	
Biological etc. materials	0	
Biodegradable materials		
Putrescible wastes	0	
Non-putrescible wastes		
Corrosive materials	0	
Pyrophoric materials	0	
Generating toxic gases	0	
Reacting with water	0	
Higher activity particles		
Soluble solids as bulk chemical compounds		

Hazardous substances / non hazardous pollutants:

Complexing

	(%wt)	Type(s) and comment
Acrylamide		
Benzene		
Chlorinated solvents		
Formaldehyde		
Organometallics		
Phenol		
Styrene		
Tri-butyl phosphate		
Other organophosphates		
Vinyl chloride		
Arsenic		
Barium		
Boron		
Boron (in Boral)		
Boron (non-Boral)		
Cadmium		
Caesium		
Selenium		
Chromium		
Molybdenum		
Thallium		
Tin		
Vanadium		
Mercury compounds		
Others		
Electronic Electrical Equipment (EEE)		
EEE Type 1		
EEE Type 2		
EEE Type 3		
EEE Type 4		
EEE Type 5		
agents (%wt): Yes		
	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		
Total complexing agents	TR	

WASTE STREAM

9C318

Miscellaneous Metals and Materials (Reactor and Non-Reactor) LLW

Potential for the waste to contain discrete items:

Yes. Large Concrete Items (LCIs) may be DIs; drummed (ungrouted)/"rubbleised" wastes assumed NOT DIs

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)		
Incineration		
Solidification		
Decontamination		
Metal treatment		
Size reduction		
Decay storage		
Recyling / reuse		
Other / various		
None		100.0

Comment on planned treatments:

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known	100.0	1.0

Classification codes for waste expected to be consigned to a landfill facility:

17 01 01, 16 10 01*/16 10 02

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Noute	2022/23 2023/24 202				
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Opportunity Stream Date that Opportunity Confidence Management Route Management Route volume (%) Baseline Opportunity Opportunity Confidence will be realised	
---	--

Waste Packaging for Disposal: (Not applicable to this waste stream)

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other			

Other information: -

Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream)

Container voidage: -

Waste Characterisation

Form (WCH):

Waste consigned for disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation:

Bounding cuboidal volume:

Inaccessible voidage: -

Other information:

RADIOACTIVITY

Source: Activation of the materials and impurities. There may be some contamination.

Uncertainty: Only very approximate estimates have been made of the total specific activities. The

activities quoted are those at the time of Final Dismantling & Site Clearance.

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

The specific activities were estimated from neutron activation calculations of the reactor material and its impurities, but this only accounted for ~1% of the total volume. There are

no data for the remaining Non-Reactor materials.

Other information: The activities quoted are those at 85 years after reactor shutdown, i.e. in 2091. There may

be some contamination by Cs137.

	Mean radioactivity, TBq/m³			Mean radioactivity, TBq/m³					
Nuclide	Waste at	Bands and	Future	Bands and	Nuclide	Waste at	Bands and	Future arisings	Bands and
	1.4.2022	Code	arisings	Code		1.4.2022	Code	ansings	Code
H 3 Be 10			3.5E-05	CC 2	Gd 153 Ho 163				8
C 14			6.755.05	8 CC 2	Ho 166m				8 8
Na 22			6.75E-05		Tm 170				8
Al 26			1E-06	8 CC 2	Tm 170				8
Cl 36			1.11E-06	CC 2	Lu 174				8
Ar 39	ł		1.11E-00	8	Lu 174				8
Ar 42				8	Hf 178n				8
K 40				8	Hf 182				8
Ca 41			1.41E-05	CC 2	Pt 193				8
Mn 53			1.412 00	8	TI 204				8
Mn 54				8	Pb 205				8
Fe 55				8	Pb 210				8
Co 60			2.67E-08	CC 2	Bi 208				8
Ni 59				8	Bi 210m				8
Ni 63			2.58E-05	CC 2	Po 210				8
Zn 65				8	Ra 223				8
Se 79				8	Ra 225				8
Kr 81				8	Ra 226				8
Kr 85				8	Ra 228				8
Rb 87				8	Ac 227				8
Sr 90				8	Th 227				8
Zr 93				8	Th 228				8
Nb 91				8	Th 229				8
Nb 92				8	Th 230				8
Nb 93m				6	Th 232				8
Nb 94			1.45E-09	CC 2	Th 234				8
Mo 93			1.16E-08	CC 2	Pa 231				8
Tc 97				8	Pa 233				8
Tc 99				6	U 232				8
Ru 106				8	U 233				8
Pd 107				8	U 234				8
Ag 108m				6	U 235				8
Ag 110m				8	U 236				8
Cd 109				8	U 238				8
Cd 113m				8	Np 237				8
Sn 119m				8	Pu 236 Pu 238				8 8
Sn 121m				6	Pu 239				8
Sn 123				8	Pu 239 Pu 240				8
Sn 126				8	Pu 241				8
Sb 125				8 8	Pu 242				8
Sb 126 Te 125m				8 8	Am 241				8
Te 125m				8	Am 242m				8
I 129	ĺ			8	Am 243				8
Cs 134	[8	Cm 242				8
Cs 134 Cs 135				8	Cm 243				8
Cs 133				6	Cm 244				8
Ba 133	ĺ		2.54E-08	CC 2	Cm 245				8
La 137	ĺ			8	Cm 246				8
La 138	[8	Cm 248				8
Ce 144				8	Cf 249				8
Pm 145				8	Cf 250				8
Pm 147	[8	Cf 251				8
Sm 147				8	Cf 252				8
Sm 151			1.78E-06	CC 2	Other a				
Eu 152	ĺ		7.13E-06	CC 2	Other b/g				
Eu 154			1.13E-07	CC 2	Total a	0		0	
Eu 155				8	Total b/g	0		1.54E-04	CC 2
50	I			· ·	·	1	İ	i	

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10

D a factor of 100 E a factor of 1000

Bands quantify uncertainty in mean radioactivity.

Code

- Measured activity
 Derived activity (best estimate)
 Derived activity (upper limit)
 Not present
 Present but not significant

- 6 Likely to be present but not assessed 7 Present in significant quantities but not determined 8 Not expected to be present in significant quantity