SITE Dungeness A

SITE OWNER **Nuclear Decommissioning Authority**

WASTE CUSTODIAN Magnox Limited

LLW **WASTE TYPE**

Is the waste subject to

Scottish Policy:

No

WASTE VOLUMES

Reported At 1.4.2022..... Stocks: $0 \, \text{m}^3$ 1.4.2092 - 31.3.2095...... Future arisings -603.0 m³ Total future arisings: 603.0 m³ Total waste volume: 603.0 m³

Comment on volumes: For inventory purposes the arisings are assumed to arise at a uniform rate over three years.

Final Dismantling & Site Clearance is assumed to commence in 2088 with reactor dismantling commencing in 2092 and lasting for 3 years. The volumes and radioactivity

have been calculated for 85 years after reactor shutdown, i.e. 2091.

Uncertainty factors on

volumes:

Stock (upper): Stock (lower):

Arisings (upper) x 1.2 Arisings (lower) x 0.8

WASTE SOURCE Insulation material from plant dismantling.

PHYSICAL CHARACTERISTICS

General description: Insulation materials.

Insulating materials (100%). Physical components (%vol):

Sealed sources: The waste does not contain sealed sources.

Bulk density (t/m3):

Comment on density: The density is of the waste as prepared for packaging.

CHEMICAL COMPOSITION

General description and components (%wt):

Insulation materials.

Neutral Chemical state:

Chemical form of

H-3: The chemical form of tritium has not been assessed.

radionuclides: C-14: The chemical form of carbon 14 has not been assessed but may be graphite.

CI-36: The chemical form of chlorine 36 has not been assessed.

Se-79: The selenium content is insignificant. Tc-99: The technetium content is insignificant. Ra: The radium content is insignificant. Th: The thorium content is insignificant. U: The uranium content is insignificant. Np: The neptunium content is insignificant. Pu: The plutonium content is insignificant.

Metals and alloys (%wt):

(%wt) Type(s) / Grade(s) with proportions % of total C14 activity Stainless steel.....

Other ferrous metals.....

Iron.....

Aluminium...... NE Beryllium.....

Cobalt.....

Copper...... 0

Lead	0		
Magnox/Magnesium	. 0		
Nickel			
Titanium			
Uranium			
Zinc	0		
Zircaloy/Zirconium	0		
Other metals	0		
Organics (%wt): Plastics may be exp		ogenated rubbers are not expected. Halog	enated plastics
	(%wt)	Type(s) and comment	% of total C14
Total cellulosics	~0		activity
Paper, cotton	0		
Wood	0		
Halogenated plastics	NE		
Total non-halogenated plastics	NE		
Condensation polymers	NE		
Others	NE		
Organic ion exchange materials	0		
Total rubber	0		
Halogenated rubber	0		
Non-halogenated rubber	0		
Hydrocarbons			
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Others			
Other organics	0		
Other materials (%wt): There might be trace	es of graph	ite.	
	(%wt)	Type(s) and comment	% of total C14
Inorgania ian ayahanga matarista	0		activity
Inorganic ion exchange materials	0		
Inorganic sludges and flocs Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	0		
Sand	J		
Glass/Ceramics	100.0	MMMF (Man Made Mineral Fibre) insulation material	
Graphite	0		
Desiccants/Catalysts			

	Asbestos	NE	
	Non/low friable	NE	
	Moderately friable	NE	
	Highly friable	NE	
	Free aqueous liquids	0	
	Free non-aqueous liquids	0	
	Powder/Ash	0	
Inorganic an	ions (%wt):		
		(%wt)	Type(s) and comment
	Fluoride	0	
	Chloride	0	
	lodide	0	
	Cyanide	0	
	Carbonate	0	
	Nitrate	0	
	Nitrite	0	
	Phosphate	0	
	Sulphate	0	
	Sulphide	0	
Materials of i	interest for The presence or ab	sence of a	sbestos has yet to be confirmed.
		(%wt)	Type(s) and comment
	Combustible metals	0	7, 5 (5) 2
	Low flash point liquids	0	
	Explosive materials	0	
	·		
	Phosphorus	0	
	Hydrides Biological etc. materials	0	
	Biodegradable materials	0	
	Putrescible wastes	0	
	Non-putrescible wastes	O	
	Corrosive materials	0	
	Pyrophoric materials	0	
	Generating toxic gases	0	
	Reacting with water	0	
	Higher activity particles	O	
	Soluble solids as bulk chemical		
	compounds		
Hazardous s non hazardo	ubstances / - us pollutants:		
		(%wt)	Type(s) and comment
	Acrylamide		

Benzene		
Chlorinated solvents		
Formaldehyde		
Organometallics		
Phenol		
Styrene		
Tri-butyl phosphate		
Other organophosphates		
Vinyl chloride		
Arsenic		
Barium		
Boron		
Boron (in Boral)		
Boron (non-Boral)		
Cadmium		
Caesium		
Selenium		
Chromium		
Molybdenum		
Thallium		
Tin		
Vanadium		
Mercury compounds		
Others		
Electronic Electrical Equipment (EEE)		
EEE Type 1		
EEE Type 2		
EEE Type 3		
EEE Type 4		
EEE Type 5		
Complexing agents (%wt): Yes		
	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		
Total complexing agents	TR	

Potential for the waste to contain discrete items:

No. In & of itself not a DI. If LLW then assumed drummed (ungrouted) & compacted so not DI (unless drums are grouted instead).

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)		
Incineration		
Solidification		
Decontamination		
Metal treatment		
Size reduction		
Decay storage		
Recyling / reuse		
Other / various		
None		100.0

Comment on planned treatments:

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository		
Expected to be consigned to a Landfill Facility	100.0	1.0
Expected to be consigned to an On-Site Disposal Facility		
Expected to be consigned to an Incineration Facility		
Expected to be consigned to a Metal Treatment Facility		
Expected to be consigned as Out of Scope		
Expected to be recycled / reused		
Disposal route not known		

Classification codes for waste expected to be consigned to a landfill facility:

17 06 01*, 17 06 03*, 17 06 04

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
_	_	_	_	_	_

Waste Packaging for Disposal: (Not applicable to this waste stream)

Container	Stream volume %	Waste loading m³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO			
1/2 Height WAMAC IP-2 ISO			
1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding)			
4m box (no shielding)			
Other			

Other information: -

Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream)

Container voidage:

Waste Characterisation

Form (WCH):

Waste consigned for disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation:

Bounding cuboidal volume:

Inaccessible voidage: -

Other information:

RADIOACTIVITY

Source: Activation of the materials and impurities. There may be some contamination.

Uncertainty: Only very approximate estimates have been made of the total specific activities. The

activities quoted are those at the time of Final Dismantling & Site Clearance.

Definition of total alpha

and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of

radioactivities:

The specific activities of the reactor material were assumed to be the same as

Trawsfynydd.

Other information: The activities quoted are those at 85 years after reactor shutdown, i.e. in 2091. There may

be some contamination by Cs137.

Mean radioactivity, TBq/m³			Mean radioactivity, TBq/m³					
Niceliale	Waste at	Bands and	Future	Bands and	Niceliala	Waste at Bands ar	nd Future	Bands and
Nuclide	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022 Code	arisings	Code
H 3			3.5E-05	CC 2	Gd 153			8
Be 10				8	Ho 163			8
C 14			6.75E-05	CC 2	Ho 166m			8
Na 22				8	Tm 170			8
AI 26			1E-06	CC 2	Tm 171			8
CI 36			1.11E-06	CC 2	Lu 174			8
Ar 39				8	Lu 176			8
Ar 42				8	Hf 178n			8
K 40				8	Hf 182			8
Ca 41			1.41E-05	CC 2	Pt 193			8
Mn 53				8	TI 204			8
Mn 54				8	Pb 205			8
Fe 55				8	Pb 210			8
Co 60			2.67E-08	CC 2	Bi 208			8
Ni 59				8	Bi 210m			8
Ni 63			2.58E-05	CC 2	Po 210			8
Zn 65				8	Ra 223			8
Se 79				8	Ra 225			8
Kr 81				8	Ra 226			8
Kr 85				8	Ra 228			8
Rb 87				8	Ac 227			8
Sr 90				8	Th 227			8
Zr 93				8	Th 228			8
Nb 91				8	Th 229			8
Nb 92				8	Th 230			8
Nb 93m				6	Th 232			8
Nb 94			1.45E-09	CC 2	Th 234			8
Mo 93			1.16E-08	CC 2	Pa 231			8
Tc 97				8	Pa 233			8
Tc 99				6	U 232			8
Ru 106				8	U 233			8
Pd 107				8	U 234			8
Ag 108m				6	U 235			8
Ag 110m				8	U 236			8
Cd 109				8	U 238			8
Cd 113m				8	Np 237			8
Sn 119m				8	Pu 236			8
Sn 121m				6	Pu 238			8
Sn 123				8	Pu 239			8
Sn 126				8	Pu 240			8
Sb 125				8	Pu 241			8
Sb 126				8	Pu 242			8
Te 125m				8	Am 241			8
Te 127m				8	Am 242m			8
l 129				8	Am 243	ĺ		8
Cs 134				8	Cm 242	ĺ		8
Cs 135				8	Cm 243	ĺ		8
Cs 137				6	Cm 244	ĺ		8
Ba 133			2.54E-08	CC 2	Cm 245]		8
La 137				8	Cm 246	ĺ		8
La 138				8	Cm 248]		8
Ce 144				8	Cf 249	ĺ		8
Pm 145				8	Cf 250	ĺ		8
Pm 147				8	Cf 251]		8
Sm 147				8	Cf 252	ĺ		8
Sm 151			1.78E-06	CC 2	Other a	ĺ		
Eu 152			7.13E-06	CC 2	Other b/g			
Eu 154			1.13E-07	CC 2	Total a	0	0	
Eu 155				8	Total b/g	0	1.54E-04	CC 2

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10

D a factor of 100 E a factor of 1000

Bands quantify uncertainty in mean radioactivity.

Code

- Code

 1 Measured activity
 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity