SITE Dungeness A SITE OWNER **Nuclear Decommissioning Authority WASTE CUSTODIAN** Magnox Limited LLW **WASTE TYPE** Is the waste subject to No Scottish Policy: **WASTE VOLUMES** Reported At 1.4.2022..... Stocks: $7.0 \, \text{m}^{3}$ Total future arisings: $0 \, \text{m}^3$ Total waste volume: $7.0 \, m^3$ Comment on volumes: Uncertainty factors on Stock (upper): x 1.2 Arisings (upper) Х volumes: Stock (lower): Arisings (lower) x 0.8 Ion exchange media from the active effluent water treatment plant in the following vessels: **WASTE SOURCE** Anion Tank 2.07m3, Cation Tank 1.36m3, Cation Tank 2 1.43m3 and CRU1 2.11m3. PHYSICAL CHARACTERISTICS General description: Amberlite 120 Acidic cation exchange resin with sulfonic acid functionality. Ion exchange media used in the treatment of active effluent. The material is stored under water in a vessel. The ion exchange media is flooded with water and would be expected to have a voidage of about 0.3. That is about 0.3 of the volume of a settled bed of flooded media would be interstial water. There are no large items that may require special handling. Physical components (%wt): Ion exchange media (~70%), interstitial water (~30%). Other minor components have not been assessed. Sealed sources: The waste does not contain sealed sources. ~0.969 Bulk density (t/m³): Comment on density: The bulk density of the waste was measured as ~0.969t/m3. ref EX09246_06_10_19 and EX09246_06_10_21 CHEMICAL COMPOSITION General description and Proprietary ion exchange material(s) (~70%), interstitial water (~30%). components (%wt): Chemical state: Chemical form of radionuclides: Metals and alloys (%wt): Type(s) / Grade(s) with proportions % of total C14 (%wt) activity Stainless steel..... Other ferrous metals...... 0 Iron..... Aluminium...... 0 Beryllium..... Cobalt..... Copper...... 0 Lead...... 0

Magnox/Magnesium...... 0

Nickel......

Titanium			
Uranium			
Zinc	0		
Zircaloy/Zirconium	0		
Other metals	0		
Organics (%wt):			
	(%wt)	Type(s) and comment	% of total C14
Total cellulosics	0		activity
Paper, cotton	0		
Wood	0		
Halogenated plastics	0		
Total non-halogenated plastics	0		
Condensation polymers	0		
Others	0		
Organic ion exchange materials	NE		
Total rubber	0		
Halogenated rubber	0		
Non-halogenated rubber	0		
Hydrocarbons			
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Others			
Other organics	NE		
Other materials (%wt):			
	(%wt)	Type(s) and comment	% of total C14
		.) [- (-)	activity
Inorganic ion exchange materials	~70.0		
Inorganic sludges and flocs	TR		
Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	0		
Sand			
Glass/Ceramics	0		
Graphite	0		
Desiccants/Catalysts			
Asbestos	0		
Non/low friable			
Moderately friable			
Highly friable			

	Free aqueous liquids	~30.0	
	Free non-aqueous liquids	0	
	Powder/Ash	0	
Inorganic anio	ons (%wt):		
		(%wt)	Type(s) and comment
	Fluoride	0	
	Chloride	0	
	lodide	0	
	Cyanide	0	
	Carbonate	0	
	Nitrate	0	
	Nitrite	0	
	Phosphate	0	
	Sulphate	0	
	Sulphide	0	
Materials of ir	nterest for -		
waste accept	ance criteria:		
		(%wt)	Type(s) and comment
	Combustible metals	TR	
	Low flash point liquids	0	
	Explosive materials	0	
	Phosphorus	0	
	Hydrides	0	
	Biological etc. materials	NE	
	Biodegradable materials	0	
	Putrescible wastes	0	
	Non-putrescible wastes		
	Corrosive materials	0	
	Pyrophoric materials	0	
	Generating toxic gases	NE	
	Reacting with water	0	
	Higher activity particles		
	Soluble solids as bulk chemical compounds		
Hazardous su non hazardou			
		(%wt)	Type(s) and comment
	Acrylamide		
	Benzene		
	Chlorinated solvents		
	Formaldehyde		
	Organometallics		

Phenol		
Styrene		
Tri-butyl phosphate		
Other organophosphates		
Vinyl chloride		
Arsenic		
Barium		
Boron	0	
Boron (in Boral)		
Boron (non-Boral)		
Cadmium		
Caesium		
Selenium		
Chromium		
Molybdenum		
Thallium		
Tin		
Vanadium		
Mercury compounds		
Others		
Electronic Electrical Equipment (EEE))	
EEE Type 1		
EEE Type 2		
EEE Type 3		
EEE Type 4		
EEE Type 5		
Complexing agents (%wt):		
	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		
Total complexing agents		
Potential for the waste to contain discrete items: No. In & of itself no could be.	ot a DI; as	ssumed not likely to contain any "rogue" items that

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %	
Low force compaction			
Supercompaction (HFC)			
Incineration			
Solidification	On-site	100.0	
Decontamination			
Metal treatment			
Size reduction			
Decay storage			
Recyling / reuse			
Other / various			
None			

Comment on planned treatments:

waste will be encapsulated to meet LLWR WAC, likely to be in HHISO's

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known	100.0	2.4

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Noute	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
Disposal at LLWR	Disposal at a Geological Disposal Facility	NE	2023	Medium	Baseline position is encapsulation and LLW disposal but this is under threat, under investigation still

Waste Packaging for Disposal:

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other	100.0	~7.2	< 1

Other information:

Waste Planned for Disposal at the LLW Repository:

Container voidage:

Waste Characterisation

The waste meets the LLWR's Waste Acceptance Criteria (WAC).

Form (WCH): The waste does not have a current WCH.

Waste consigned for disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation:

Bounding cuboidal volume:

Inaccessible voidage:

Other information:

RADIOACTIVITY

Source: Contaminated resin. Contamination by fission products, actinides and activation products.

Uncertainty: Activity is derived from sample results refs: EX09246/06/10/17 Issue 1, EX09246/06/10/19

Issue 1, EX09246/06/10/21 Issue 1 & EX09246/06/10/35 Issue 1

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the

listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

data taken from sample results and decayed by six years for RWI 2022

Other information:

	Mean radioactivity, TBq/m³			Mean radioactivity, TBq/m³				
Nicoliala	Waste at	Bands and	Future Bands a	A 1 11 1	Waste at	Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings Code	i	1.4.2022	Code	arisings	Code
H 3	5.76E-05	BB 2		Gd 153		8		
Be 10		8		Ho 163		8		
C 14	3.48E-05	BB 2		Ho 166m		8		
Na 22		8		Tm 170		8		
AI 26		8		Tm 171		8		
CI 36		8		Lu 174		8		
Ar 39		8		Lu 176		8		
Ar 42		8		Hf 178n		8		
K 40		8		Hf 182		8		
Ca 41		8		Pt 193		8		
Mn 53		8		TI 204		8		
Mn 54		8		Pb 205		8		
Fe 55	4.82E-06	BB 2		Pb 210		8		
Co 60	1.88E-06	BB 2		Bi 208		8		
Ni 59		8		Bi 210m		8		
Ni 63	1.19E-05	BB 2		Po 210		8		
Zn 65		8		Ra 223		8		
Se 79		8		Ra 225		8		
Kr 81		8		Ra 226		8		
Kr 85		8		Ra 228		8		
Rb 87		8		Ac 227		8		
Sr 90	3.37E-04	BB 2		Th 227		8		
Zr 93		8		Th 228		8		
Nb 91		8		Th 229		8		
Nb 92		8		Th 230		8		
Nb 93m		8		Th 232		8		
Nb 94		8		Th 234		8		
Mo 93		8		Pa 231		8		
Tc 97		8		Pa 233		8		
Tc 99	9.51E-05	BB 2		U 232		8		
Ru 106	1.25E-08	BB 2		U 233		8		
Pd 107		8		U 234		8		
Ag 108m		8		U 235		8		
Ag 110m		8		U 236		8		
Cd 109		8		U 238		8		
Cd 113m		8		Np 237		8		
Sn 119m		8		Pu 236		8		
Sn 121m		8		Pu 238	5.36E-05	BB 2		
Sn 123		8		Pu 239	6.84E-05	BB 2		
Sn 126		8		Pu 240	6.84E-05	BB 2		
Sb 125	4.03E-07	BB 2		Pu 241	1.68E-03	BB 2		
Sb 126		8		Pu 242		8		
Te 125m	1.01E-07	BB 2		Am 241	1.79E-04	BB 2		
Te 127m		8		Am 242m		8		
I 129	1.66E-07	BB 2		Am 243		8		
Cs 134	5.33E-08	BB 2		Cm 242		8		
Cs 135		8		Cm 243	1.36E-05	BB 2		
Cs 137	2.36E-03	BB 2		Cm 244	1.24E-05	BB 2		
Ba 133		8		Cm 245		8		
La 137		8		Cm 246		8		
La 138		8		Cm 248		8		
Ce 144		8		Cf 249		8		
Pm 145		8		Cf 250		8		
Pm 147		8		Cf 251		8		
Sm 147		8		Cf 252		8		
Sm 151		8		Other a				
Eu 152	1.75E-07	BB 2		Other b/g				
Eu 154	4.30E-05	BB 2		Total a	3.95E-04	BB 2	0	
Eu 155	1.15E-05	BB 2		Total b/g	4.64E-03	BB 2	0	
<u> </u>		I			i		î	

Bands (Upper and Lower)

A a factor of 1.5
B a factor of 3
C a factor of 10
D a factor of 100
E a factor of 1000

Note: Bands quantify uncertainty in

mean radioactivity.

- Measured activity
 Derived activity (best estimate)
 Derived activity (upper limit)

- 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
- 8 Not expected to be present in significant quantity