SITE Dungeness A SITE OWNER **Nuclear Decommissioning Authority WASTE CUSTODIAN** Magnox Limited **VLLW WASTE TYPE** Is the waste subject to Nο Scottish Policy: **WASTE VOLUMES** Reported At 1.4.2022..... Stocks: $0.4 \, \text{m}^3$ Total future arisings: $0 \, \text{m}^3$ Total waste volume: $0.4 \, \text{m}^3$ Comment on volumes: The majority of waste has now been disposed of so no further arisings expected. A small volume remains due to some samples that have recently been located awaiting disposal. Uncertainty factors on Stock (upper): x 1.2 Arisings (upper) volumes: Stock (lower): x 0.8 Arisings (lower) **WASTE SOURCE** Insulation, asbestos and man-made mineral fibre (MMMF), removed from boilers and gas ducts where activation of the metal inside the insulation may have occurrred. PHYSICAL CHARACTERISTICS General description: Insulation, either asbestos and/or MMF. The waste may contain some support wires and plastics. Insulation 98%, either asbestos and/or MMF, plastics 1%, and metal 1%. Physical components (%wt): Sealed sources: The waste does not contain sealed sources. < 0.36 Bulk density (t/m³): Comment on density: CHEMICAL COMPOSITION General description and Insulation 98%, either asbestos and/or MMF, plastics 1%, and metal 1%. components (%wt): Neutral Chemical state: Chemical form of H-3: The chemical form of tritium has not been determined. radionuclides: Metals and alloys (%wt): (%wt) Type(s) / Grade(s) with proportions % of total C14 activity Stainless steel..... Other ferrous metals..... Mild steel. Iron..... Aluminium..... Beryllium..... Cobalt..... Copper..... Lead..... Magnox/Magnesium..... Nickel..... Titanium..... Uranium.....

	Zinc			
	Zircaloy/Zirconium			
	Other metals			
Organics	(%wt): -			
		(%wt)	Type(s) and comment	% of total C14
	Total cellulosics	0		activity
	Paper, cotton			
	Wood			
	Halogenated plastics	1.0	Plastic bags and other items.	
	Total non-halogenated plastics	0		
	Condensation polymers			
	Others			
	Organic ion exchange materials			
	Total rubber	0		
	Halogenated rubber			
	Non-halogenated rubber			
	Hydrocarbons			
	Oil or grease			
	Fuel			
	Asphalt/Tarmac (cont.coal tar)			
	Asphalt/Tarmac (no coal tar)			
	Bitumen			
	Others			
	Other organics			
Other ma	terials (%wt):			
		(%wt)	Type(s) and comment	% of total C14
		,	, ,	activity
	Inorganic ion exchange materials			
	Inorganic sludges and flocs			
	Soil			
	Brick/Stone/Rubble			
	Cementitious material			
	Sand			
	Glass/Ceramics	NE		
	Graphite			
	Desiccants/Catalysts	00.0	01 (11 (144) 11)	
	Asbestos	~98.0	Chrysotile (White) - some MMMF may be present.	
	Non/low friable	~98.0	Lagging - Chrysotile (White) - some MMMF may be present.	
	Moderately friable			
	Highly friable			
	Free aqueous liquids			

	Free non-aqueous liquids		
	Powder/Ash		
Inorganic ar	nions (%wt):		
		(%wt)	Type(s) and comment
	Fluorido	,	71 ()
	Fluoride		
	Chloride		
	lodide		
	Cyanide		
	Carbonate		
	Nitrate		
	Nitrite		
	Phosphate		
	Sulphate		
	Sulphide		
Materials of	interest for - otance criteria:		
waste accep	nance ontena.	(0.4)	_
		(%wt)	Type(s) and comment
	Combustible metals		
	Low flash point liquids		
	Explosive materials		
	Phosphorus		
	Hydrides		
	Biological etc. materials		
	Biodegradable materials	0	
	Putrescible wastes		
	Non-putrescible wastes		
	Corrosive materials		
	Pyrophoric materials		
	Generating toxic gases		
	Reacting with water		
	Higher activity particles		
	Soluble solids as bulk chemical compounds		
	substances / Asbestos. ous pollutants:		
		(%wt)	Type(s) and comment
	Acrylamide		
	Benzene		
	Chlorinated solvents		
	Formaldehyde		
	Organometallics		
	Phenol		

Styrene		
Tri-butyl phosphate		
Other organophosphates		
Vinyl chloride		
Arsenic		
Barium		
Boron	0	
Boron (in Boral)		
Boron (non-Boral)		
Cadmium		
Caesium		
Selenium		
Chromium		
Molybdenum		
Thallium		
Tin		
Vanadium		
Mercury compounds		
Others		
Electronic Electrical Equipment (EEE)		
EEE Type 1		
EEE Type 2		
EEE Type 3		
EEE Type 4		
EEE Type 5		
Complexing agents (%wt):		
	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		
Total complexing agents	0	
Potential for the waste to Not yet determined. contain discrete items:	In & of its	self not a DI; waste stream may include DIs

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)		
Incineration		
Solidification		
Decontamination		
Metal treatment		
Size reduction		
Decay storage		
Recyling / reuse		
Other / various		
None		100.0

Comment on planned treatments:

100% of this waste stream is expected to be sent to Landfill as VLLW.

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known	100.0	0.36

Classification codes for waste expected to be consigned to a landfill facility:

17 06 01* and 17 06 05* the second EWC depends if the additional component other than the asbestos are separated.

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Noute	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

			Estimated		
Baseline Management Route	Opportunity Management Route	Stream volume (%)	Date that Opportunity will be realised	Opportunity Confidence	Comment

Waste Packaging for Disposal: (Not applicable to this waste stream)

Container	Stream volume %	Waste loading m³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO			
1/2 Height WAMAC IP-2 ISO			
1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding)			
4m box (no shielding)			
Other			

Other information:

Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream)

Container voidage: -

Waste Characterisation

Form (WCH):

-

Waste consigned for disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation:

Bounding cuboidal volume:

Inaccessible voidage: -

Other information:

RADIOACTIVITY

Source: Contamination of the insulation by activated steel and its corrosion products, and reactor

gas leakage.

Uncertainty: -

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

Activities based on LLWR WCH - 1MXN-3DUA-0-WCH-0-4621 V2 decayed 6 years from

2016 to 2022.

Other information: -

	Mean radioactivity, TBq/m³				Mean radioactivity, TBq/m³				
Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code	Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code
H 3	5.6E-09	CC 1			Gd 153		8		
Be 10		8			Ho 163		8		
C 14	2.08E-09	CC 1			Ho 166m		8		
Na 22		8			Tm 170		8		
Al 26		8			Tm 171		8		
CI 36	7.55E-09	CC 1			Lu 174		8		
Ar 39		8			Lu 176		8		
Ar 42		8			Hf 178n		8		
K 40		8			Hf 182		8		
Ca 41		8			Pt 193		8		
Mn 53		8			TI 204		8		
Mn 54		8			Pb 205		8		
Fe 55		8			Pb 210		8		
Co 60	1.38E-09	CC 2			Bi 208		8		
Ni 59		8			Bi 210m		8		
Ni 63		8			Po 210		8		
Zn 65		8			Ra 223		8		
Se 79		8			Ra 225		8		
Kr 81		8			Ra 226		8		
Kr 85		8			Ra 228		8		
Rb 87		8			Ac 227		8		
Sr 90		8			Th 227		8		
Zr 93		8			Th 228		8		
Nb 91		8			Th 229		8		
Nb 92		8			Th 230		8		
Nb 93m		8			Th 232		8		
Nb 94		8			Th 234		8		
Mo 93		8			Pa 231		8		
Tc 97		8			Pa 233		8		
Tc 99		8			U 232		8		
Ru 106		8			U 233		8		
Pd 107		8			U 234		8		
Ag 108m		8			U 235		8		
Ag 110m		8			U 236		8		
Cd 109		8			U 238		8		
Cd 113m		8			Np 237		8		
Sn 119m		8			Pu 236		8		
Sn 121m		8			Pu 238		8		
Sn 123		8			Pu 239		8		
Sn 126		8			Pu 240		8		
Sb 125		8			Pu 241	1.62E-09	CC 2		
Sb 126		8			Pu 242		8		
Te 125m		8			Am 241		8		
Te 127m		8			Am 242m		8		
l 129		8			Am 243		8		
Cs 134		8			Cm 242		8		
Cs 135		8			Cm 243		8		
Cs 137	1.3E-09	CC 2			Cm 244		8		
Ba 133		8			Cm 245		8		
La 137		8			Cm 246		8		
La 138		8			Cm 248		8		
Ce 144		8			Cf 249		8		
Pm 145		8			Cf 250		8		
Pm 147		8			Cf 251		8		
Sm 147		8			Cf 252		8		
Sm 151	4 /== 0=	8			Other a				
Eu 152	1.17E-08	CC 2			Other b/g	_	_	_	
Eu 154	1.13E-09	CC 2			Total a	0	8	0	
Eu 155	1	8			Total b/g	3.24E-08	CC 1	0	
	Unner and Low				Code				

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

- 1 Measured activity
 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity
- 8 Not expected to be present in significant quantity