SITE Hinkley Point A SITE OWNER **Nuclear Decommissioning Authority** **WASTE CUSTODIAN** Magnox Limited **ILW WASTE TYPE** Is the waste subject to Scottish Policy: No **WASTE VOLUMES** Reported Stocks: At 1.4.2022..... $0 \, \text{m}^3$ 1.4.2085 - 31.3.2088....... 384.0 m³ Future arisings -Total future arisings: 384.0 m³ Total waste volume: 384.0 m³ Comment on volumes: For inventory purposes the arisings are assumed to arise at a uniform rate over three > years. Final Dismantling & Site Clearance is assumed to commence in 2081 and end in 2090. Reactor dismantling will commence in 2085 and last for three years. Volumes and radioactivity have been calculated for 85 years after reactor shutdown, i.e. 2085. Uncertainty factors on Stock (upper): Arisings (upper) x 1.2 volumes: Stock (lower): Arisings (lower) x 0.8 **WASTE SOURCE** Mild steel items from the reactor structure. #### PHYSICAL CHARACTERISTICS General description: A variety of mild steel items. Waste can be packaged in standard ILW packages. Mild steel items (100%). Physical components (%wt): Sealed sources: The waste does not contain sealed sources. Bulk density (t/m3): Comment on density: The density is of the waste as cut for packaging. ### CHEMICAL COMPOSITION General description and components (%wt): Mild steel (100%). Chemical state: Neutral Chemical form of H-3: The tritium content is insignificant. radionuclides: C-14: The carbon 14 is incorporated in the steel. There also may be some contamination as graphite. CI-36: The chlorine 36 will be incorporated in the steel. Se-79: The selenium content is insignificant. Tc-99: The chemical form of technetium has not been determined. Ra: The radium content is insignificant. Th: The thorium content is insignificant. U: The uranium content is insignificant. Np: The neptunium content is insignificant. Pu: The plutonium content is insignificant. Metals and alloys (%wt): All of the waste will be bulk metal items which have been cut for packaging. Metal thicknesses will probably range from a few mm to about 100 mm. Type(s) / Grade(s) with proportions % of total C14 (%wt) activity Stainless steel..... Other ferrous metals..... 100.0 All of the waste included in this 100.0 > waste stream is mild steel. Mild steel types are BS970(1955)-EN3A, BS970(1955)-EN5, BS1501, BS14 and BS15. Iron..... | Aluminium | 0 | | | |---|--------------|--|-------------------------| | Beryllium | 0 | | | | Cobalt | <0.03 | Greatest measured value from the various components. | | | Copper | 0 | · | | | Lead | 0 | | | | Magnox/Magnesium | 0 | | | | Nickel | <0.15 | Greatest measured value from the various components. | | | Titanium | | | | | Uranium | | | | | Zinc | 0 | | | | Zircaloy/Zirconium | 0 | | | | Other metals | TR | Silver and niobium. | | | Organics (%wt): None expected. The | ere are no h | nalogenated plastics or rubbers present. | | | | (%wt) | Type(s) and comment | % of total C14 | | Total cellulosics | 0 | | activity | | Paper, cotton | 0 | | | | Wood | 0 | | | | Halogenated plastics | 0 | | | | Total non-halogenated plastics | 0 | | | | Condensation polymers | 0 | | | | Others | 0 | | | | Organic ion exchange materials | 0 | | | | Total rubber | 0 | | | | Halogenated rubber | 0 | | | | Non-halogenated rubber | 0 | | | | Hydrocarbons | | | | | Oil or grease | | | | | Fuel | | | | | Asphalt/Tarmac (cont.coal tar) | | | | | Asphalt/Tarmac (no coal tar) | | | | | Bitumen | | | | | Others | | | | | Other organics | 0 | | | | Other materials (%wt): Some graphite dust | may be as | sociated with reactor materials. | | | | (%wt) | Type(s) and comment | % of total C14 activity | | Inorganic ion exchange materials | 0 | | • | | Inorganic sludges and flocs | 0 | | | | Soil | 0 | | | | Brick/Stone/Rubble | 0 | | | | Cementitious material | 0 | | | | Sand | | | |---|--------------|--| | Glass/Ceramics | 0 | | | Graphite | TR | | | Desiccants/Catalysts | | | | Asbestos | 0 | | | Non/low friable | | | | Moderately friable | | | | Highly friable | | | | Free aqueous liquids | 0 | | | Free non-aqueous liquids | 0 | | | Powder/Ash | 0 | | | Inorganic anions (%wt): There may be a tra | ce of chlori | de present. | | | | | | | (%wt) | Type(s) and comment | | Fluoride | 0 | | | Chloride | TR | | | lodide | 0 | | | Cyanide | 0 | | | Carbonate | 0 | | | Nitrate | 0 | | | Nitrite | 0 | | | Phosphate | 0 | | | Sulphate | 0 | | | Sulphide | 0 | | | Materials of interest for No materials likely | to pose a fi | ire or other non-radiological hazard have been identified. | | waste acceptance criteria: | | | | | (%wt) | Type(s) and comment | | Combustible metals | 0 | | | Low flash point liquids | 0 | | | Explosive materials | 0 | | | Phosphorus | 0 | | | Hydrides | 0 | | | Biological etc. materials | 0 | | | Biodegradable materials | | | | Putrescible wastes | 0 | | | Non-putrescible wastes | | | | Corrosive materials | 0 | | | Pyrophoric materials | 0 | | | Generating toxic gases | 0 | | | Reacting with water | 0 | | | Higher activity particles | | | | Soluble solids as bulk chemical compounds | | | Hazardous substances / non hazardous pollutants: Complexing None expected | | (%wt) | Type(s) and comment | |---------------------------------------|-------|--| | Acrylamide | | | | Benzene | | | | Chlorinated solvents | | | | Formaldehyde | | | | Organometallics | | | | Phenol | | | | Styrene | | | | Tri-butyl phosphate | | | | Other organophosphates | | | | Vinyl chloride | | | | Arsenic | | | | Barium | | | | Boron | | | | Boron (in Boral) | | | | Boron (non-Boral) | | | | Cadmium | | | | Caesium | | | | Selenium | | | | Chromium | | | | Molybdenum | <0.03 | Greatest measured value from the various components. | | Thallium | | | | Tin | | | | Vanadium | | | | Mercury compounds | | | | Others | | | | Electronic Electrical Equipment (EEE) | | | | EEE Type 1 | | | | EEE Type 2 | | | | EEE Type 3 | | | | EEE Type 4 | | | | EEE Type 5 | | | | agents (%wt): Yes | | | | | (%wt) | Type(s) and comment | | EDTA | | | | DPTA | | | | NTA | | | | Polycarboxylic acids | | | | Other organic complexants | | | | Total complexing agents | TR | | Potential for the waste to contain discrete items: Yes. Large Metal Items (LMIs)/"substantial" thickness items considered "durable" assumed DIs. NB If recycled then DI Limits n/a #### **PACKAGING AND CONDITIONING** Conditioning method: The waste is not expected to be supercompacted. It will be placed in baskets in the waste packages, and then encapsulated. Plant Name: None Location: Hinkley Point A Site Plant startup date: About 2085 Total capacity ~5000.0 (m³/y incoming waste): Target start date for packaging this stream: 2085 Throughput for this stream (m³/y incoming waste): ~77.0 Other information: Waste will be conditioned when removed from the reactor. Likely container type: | r | Container | Waste
packaged
(%vol) | Waste loading (m³) | Payload
(m³) | Number of packages | |---|-----------------------|-----------------------------|--------------------|-----------------|--------------------| | 4 | 4m box (no shielding) | 100.0 | 16.2 | 18.9 | 24 | Likely container type comment: The waste is assumed to be in baskets in the waste package so the occupied volume in the package is greater than the original waste volume. Container choice may be influenced by Transport Regulations at the time of Final Site Clearance. Range in container waste volume: Not yet determined. No significant variability is expected. Other information on containers: The container material is expected to be stainless steel. Likely conditioning matrix: Likely conditioning mat Not specified Other information: It is now assumed that the waste will be encapsulated. The matrix could be BFS/OPC. Conditioned density (t/m³): Conditioned density comment: The conditioned waste density now assumes that the waste will be encapsulated. Other information on conditioning: The waste will be in baskets placed in the waste packages. Baskets of different Final Dismantling & Site Clearance ILW wastes may be in the same waste package. Opportunities for alternative disposal routing: - ~3.0 | Baseline Opportunity Stream Date that Opportunity Management Route Management Route volume (%) Will be realised Estimated Date that Opportunity Confidence will be realised | |---| |---| ### **RADIOACTIVITY** Source: Activation of the mild steel and its impurities. Uncertainty: The values quoted were derived by calculation from available material specifications and are indicative of the activities that are to be expected. The major source of uncertainty is the impurity levels. Definition of total alpha and total beta/gamma: Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'. #### **WASTE STREAM** Mild Steel (Reactor) ILW 9D311 Measurement of radioactivities: The specific activities were estimated from neutron activation calculations of impurities in The activities quoted are those at 85 years after reactor shutdown, i.e. in 2085. There may be some contamination by Cs137. Other information: #### **WASTE STREAM** Mild Steel (Reactor) ILW 9D311 | | Mean radioactivity, TBq/m³ | | | Mean radioactivity, TBq/m³ | | | | | | |------------------|----------------------------|-------------------|--------------------|----------------------------|-----------|----------------------|-------------------|--------------------|-------------------| | Nuclide | Waste at
1.4.2022 | Bands and
Code | Future
arisings | Bands and
Code | Nuclide | Waste at
1.4.2022 | Bands and
Code | Future
arisings | Bands and
Code | | H 3 | | | | 8 | Gd 153 | | | | 8 | | Be 10 | | | | 8 | Ho 163 | | | | 8 | | C 14 | | | 2.93E-02 | CC 2 | Ho 166m | | | | 8 | | Na 22 | | | | 8 | Tm 170 | | | | 8 | | AI 26 | | | | 8 | Tm 171 | | | | 8 | | CI 36 | | | 4.72E-06 | CC 2 | Lu 174 | | | | 8 | | Ar 39 | | | | 8 | Lu 176 | | | | 8 | | Ar 42 | | | | 8 | Hf 178n | | | | 8 | | K 40 | | | | 8 | Hf 182 | | | | 8 | | Ca 41 | | | | 8 | Pt 193 | | | | 8 | | Mn 53 | | | | 8 | TI 204 | | | 5.63E-08 | CC 2 | | Mn 54 | | | | 8 | Pb 205 | | | | 8 | | Fe 55 | | | 1.69E-07 | CC 2 | Pb 210 | | | | 8 | | Co 60 | | | 3.61E-04 | CC 2 | Bi 208 | | | | 8 | | Ni 59 | | | 4.7E-03 | CC 2 | Bi 210m | | | | 8 | | Ni 63 | | | 3.41E-01 | CC 2 | Po 210 | | | | 8 | | Zn 65 | | | | 8 | Ra 223 | | | | 8 | | Se 79 | | | | 8 | Ra 225 | | | | 8 | | Kr 81 | | | | 8 | Ra 226 | | | | 8 | | Kr 85 | | | | 8 | Ra 228 | | | | 8 | | Rb 87 | | | | 8 | Ac 227 | | | | 8 | | Sr 90 | | | | 8 | Th 227 | | | | 8 | | Zr 93 | | | | 8 | Th 228 | | | | 8 | | Nb 91 | | | | 8 | Th 229 | | | | 8 | | Nb 92 | | | 2.42E-09 | CC 2 | Th 230 | | | | 8 | | Nb 93m | | | | 6 | Th 232 | | | | 8 | | Nb 94 | | | 6.46E-05 | CC 2 | Th 234 | | | | 8 | | Mo 93 | | | 1.78E-04 | CC 2 | Pa 231 | | | | 8 | | Tc 97 | Ī | | | 8 | Pa 233 | | | | 8 | | Tc 99 | | | 3.32E-05 | CC 2 | U 232 | | | | 8 | | Ru 106 | | | | 8 | U 233 | | | | 8 | | Pd 107 | | | | 8 | U 234 | | | | 8 | | Ag 108m | | | 4.87E-06 | CC 2 | U 235 | | | | 8 | | Ag 110m | | | | 8 | U 236 | | | | 8 | | Cd 109 | | | | 8 | U 238 | | | | 8 | | Cd 113m | | | | 8 | Np 237 | | | | 8 | | Sn 119m | | | | 8 | Pu 236 | | | | 8 | | Sn 121m | | | | 8 | Pu 238 | | | | 8 | | Sn 123 | | | | 8 | Pu 239 | | | | 8 | | Sn 126 | | | | 8 | Pu 240 | | | | 8 | | Sb 125 | | | | 8 | Pu 241 | | | | 8 | | Sb 126 | | | | 8 | Pu 242 | | | | 8 | | Te 125m | | | | 8 | Am 241 | | | | 8 | | Te 127m |] | | | 8 | Am 242m | | | | 8 | | I 129 | | | | 8 | Am 243 | | | | 8 | | Cs 134 |] | | | 8 | Cm 242 | | | | 8 | | Cs 135 | | | | 8 | Cm 243 | | | | 8 | | Cs 137 | | | | 6 | Cm 244 | | | | 8 | | Ba 133 | | | | 8 | Cm 245 | | | | 8 | | La 137 | | | | 8 | Cm 246 | | | | 8 | | La 138 | | | | 8 | Cm 248 | | | | 8 | | Ce 144 |] | | | 8 | Cf 249 | | | | 8 | | Pm 145 | | | | 8 | Cf 250 | | | | 8 | | Pm 145
Pm 147 |] | | | 8 | Cf 251 | | | | 8 | | Sm 147 | | | | 8 | Cf 252 | | | | 8 | | |] | | | 8
8 | Other a | | | | 3 | | Sm 151 | | | | | Other b/g | | | | | | Eu 152 |] | | | 8 | Total a | 0 | | 0 | | | Eu 154 | | | | 8 | Total b/g | 0 | | 3.76E-01 | CC 2 | | Eu 155 | I | | | 8 | rotai b/g | • | ! | 5.7 JE-01 | 00 2 | ### Bands (Upper and Lower) A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000 Note: Bands quantify uncertainty in mean radioactivity. ### Code - Measured activity Derived activity (best estimate) Derived activity (upper limit) - 4 Not present - 5 Present but not significant - 6 Likely to be present but not assessed - 7 Present in significant quantities but not determined - 8 Not expected to be present in significant quantity