SITE Hinkley Point A SITE OWNER Nuclear Decommissioning Authority WASTE CUSTODIAN Magnox Limited WASTE TYPE LLW Is the waste subject to Scottish Policy: No **WASTE VOLUMES** Comment on volumes: For inventory purposes the arisings are assumed to arise at a uniform rate over three years. Some graphite previously identified as LLW is now ILW. Final Dismantling & Site Clearance is assumed to commence in 2081 with reactor dismantling commencing in 2085 and lasting for three years. Volumes and radioactivity have been calculated for 85 years after reactor shutdown, i.e. 2085. Uncertainty factors on volumes: Stock (upper): x Stock (lower): x Arisings (upper) x 1.2 Arisings (lower) x 0.8 **WASTE SOURCE** Thermal column graphite from reactor dismantling. ### PHYSICAL CHARACTERISTICS General description: Graphite blocks and other graphite components. Waste can be packaged in standard LLW packages. Physical components (%wt): Graphite (~100%). Sealed sources: The waste does not contain sealed sources. Bulk density (t/m³): ~1.25 Comment on density: Density estimate based upon assumed packing efficiency of the waste assuming 90% of the graphite is in blocks and 10% is rubble. #### **CHEMICAL COMPOSITION** General description and components (%wt): Graphite and possibly traces of ferrous metals. Chemical state: Neutral Chemical form of H-3: Tritium may be chemically bound with the graphite. radionuclides: C-14: Carbon 14 will be present as graphite. CI-36: Chlorine 36 will probably be chemically bound to the graphite. Some may be linked chemically with impurities in the graphite. Se-79: The selenium content is insignificant. Tc-99: The technetium content is insignificant. Ra: Radium content is insignificant. Th: The thorium content is insignificant. U: There may be traces of uranium as metal or oxide. Np: The neptunium content is insignificant. Pu: There may be traces of plutonium as metal or oxide. Metals and alloys (%wt): There are no metallic items present. (%wt) Type(s) / Grade(s) with proportions % of total C14 activity by ferrous metals. by ferrous metals. | | Beryllium | TR | | | |---------|-------------------------------------|------------|--|----------------------------| | | Cobalt | | | | | | Copper | 0 | | | | | Lead | 0 | | | | | Magnox/Magnesium | 0 | | | | | Nickel | | | | | | Titanium | | | | | | Uranium | | | | | | Zinc | 0 | | | | | Zircaloy/Zirconium | 0 | | | | | Other metals | 0 | | | | Organic | s (%wt): None expected. Ha | alogenated | plastics and rubbers will not be present | | | | | (%wt) | Type(s) and comment | % of total C14 | | | Total cellulosics | 0 | | activity | | | Paper, cotton | 0 | | | | | Wood | 0 | | | | | Halogenated plastics | 0 | | | | | Total non-halogenated plastics | 0 | | | | | Condensation polymers | 0 | | | | | Others | 0 | | | | | Organic ion exchange materials | 0 | | | | | Total rubber | 0 | | | | | Halogenated rubber | 0 | | | | | Non-halogenated rubber | 0 | | | | | Hydrocarbons | | | | | | Oil or grease | | | | | | Fuel | | | | | | Asphalt/Tarmac (cont.coal tar) | | | | | | Asphalt/Tarmac (no coal tar) | | | | | | Bitumen | | | | | | Others | | | | | | Other organics | 0 | | | | Other m | naterials (%wt): Expect only graphi | te. | | | | | | (0/ set) | Tune(a) and comment | 0/ of total C1.4 | | | | (%wt) | Type(s) and comment | % of total C14
activity | | | Inorganic ion exchange materials | 0 | | | | | Inorganic sludges and flocs | 0 | | | | | Soil | 0 | | | | | Brick/Stone/Rubble | 0 | | | | | Cementitious material | 0 | | | | | Sand | | | | | | Glass/Ceramics | 0 | | | | Graphite | 100.0 | 100.0 | |--|-------|--| | Desiccants/Catalysts | | .55.10 | | Asbestos | 0 | | | Non/low friable | · | | | Moderately friable | | | | Highly friable | | | | Free aqueous liquids | 0 | | | Free non-aqueous liquids | 0 | | | Powder/Ash | 0 | | | | | | | Inorganic anions (%wt): None of the inorgan trace concentration | | listed in the table is expected to be present at greater than | | | (%wt) | Type(s) and comment | | Fluoride | TR | Detected at trace levels in inactive graphite material. | | Chloride | TR | | | lodide | 0 | | | Cyanide | 0 | | | Carbonate | TR | | | Nitrate | TR | | | Nitrite | TR | | | Phosphate | TR | Detected at trace levels in inactive graphite material. | | Sulphate | TR | Detected at trace levels in inactive graphite material. | | Sulphide | 0 | | | | | ire or other non-radiological hazard have been identified. sk; it is difficult but not impossible to ignite. | | | (%wt) | Type(s) and comment | | Combustible metals | 0 | | | Low flash point liquids | 0 | | | Explosive materials | 0 | | | Phosphorus | TR | Detected at trace levels in inactive graphite material. | | Hydrides | 0 | | | Biological etc. materials | 0 | | | Biodegradable materials | | | | Putrescible wastes | 0 | | | Non-putrescible wastes | | | | Corrosive materials | 0 | | | Pyrophoric materials | 0 | | | Generating toxic gases | 0 | | | Reacting with water | 0 | | | Higher activity particles | | | | Soluble solids as bulk chemical compounds | | | |--|-------|---| | Hazardous substances / None expected non hazardous pollutants: | | | | | (%wt) | Type(s) and comment | | Acrylamide | | | | Benzene | | | | Chlorinated solvents | | | | Formaldehyde | | | | Organometallics | | | | Phenol | | | | Styrene | | | | Tri-butyl phosphate | | | | Other organophosphates | | | | Vinyl chloride | | | | Arsenic | TR | Detected at trace levels in inactive graphite material. | | Barium | | | | Boron | | | | Boron (in Boral) | | | | Boron (non-Boral) | | | | Cadmium | | | | Caesium | | | | Selenium | | | | Chromium | | | | Molybdenum | | | | Thallium | TR | Detected at trace levels in inactive graphite material. | | Tin | | | | Vanadium | | | | Mercury compounds | | | | Others | TR | Gallium, germanium and thallium detected at trace levels in inactive graphite material. | | Electronic Electrical Equipment (EEE) | | | | EEE Type 1 | | | | EEE Type 2 | | | | EEE Type 3 | | | | EEE Type 4 | | | | EEE Type 5 | | | | Complexing agents (%wt): Yes | | | | | (%wt) | Type(s) and comment | | EDTA | | | | DPTA | | | | NITA | | | | Polycarboxylic acids | |---------------------------| | Other organic complexants | Total complexing agents..... TR Potential for the waste to contain discrete items: Yes. Graphite Bricks/Tiles assumed to be Dls. Bricks assumed drummed (ungrouted) so assumed Bricks are Dls; If grouted, Drum is also a Dl. "Rubble" pieces assumed drummed (ungrouted) assumed NOT Dls; If grouted, Drum is a Dl. #### TREATMENT, PACKAGING AND DISPOSAL Planned on-site / off-site treatment(s): | Treatment | On-site /
Off site | Stream volume % | |-----------------------|-----------------------|-----------------| | Low force compaction | | | | Supercompaction (HFC) | | | | Incineration | | | | Solidification | | | | Decontamination | | | | Metal treatment | | | | Size reduction | | | | Decay storage | | | | Recyling / reuse | | | | Other / various | | 100.0 | | None | | | Comment on planned treatments: **Disposal Routes:** | Disposal Route | Stream volume % | Disposal
density t/m3 | |--|-----------------|--------------------------| | Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known | 100.0 | 1.3 | Classification codes for waste expected to be consigned to a landfill facility: 17 09 04 ### Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above): | Disposal Route | Stream volume % | | | | | |--|-----------------|---------|---------|--|--| | Disposal Notice | 2022/23 | 2023/24 | 2024/25 | | | | Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known | | | | | | ### Opportunities for alternative disposal routing: | wallagement reads wallagement reads volume (70) will be realised | Baseline (Management Route Man | Opportunity nagement Route | Stream volume (%) | Estimated Date that Opportunity will be realised | Opportunity
Confidence | Comment | |--|--------------------------------|----------------------------|-------------------|--|---------------------------|---------| |--|--------------------------------|----------------------------|-------------------|--|---------------------------|---------| **Waste Packaging for Disposal:** (Not applicable to this waste stream) | Container | Stream volume % | Waste loading m³ | Number of packages | |--|-----------------|------------------|--------------------| | 1/3 Height IP-1 ISO
2/3 Height IP-2 ISO | | | | | 1/2 Height WAMAC IP-2 ISO | | | | | 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) | | | | | 4m box (no shielding) | | | | | Other | | | | Other information: Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream) Container voidage: Waste Characterisation Form (WCH): Waste consigned for disposal to LLWR in year of generation: Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream) Stream volume (%): Waste stream variation: Bounding cuboidal volume: Inaccessible voidage: Other information: **RADIOACTIVITY** Source: Activation of the graphite and impurities. Uncertainty: The values quoted were derived by calculation from available material specification and are indicative of the activities that are expected. The major source of uncertainty is the impurity levels. Definition of total alpha and total beta/gamma: Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'. Measurement of The specific activities were estimated from neutron activation calculations of the material radioactivities: and its impurities. Additional data from newly calculated inventories including 100 ppb U precursor as per M/EF/GEN/EAN/0008/20 Other information: The activities quoted are those at 85 years after reactor shutdown, i.e. in 2085. There may be some contamination by Cs137. | | Mean radioactivity, TBq/m³ | | | Mean radioactivity, TBq/m³ | | | | | | |---------|----------------------------|-------------------|--------------------|----------------------------|-----------|----------------------|-------------------|--------------------|-------------------| | Nuclide | Waste at 1.4.2022 | Bands and
Code | Future
arisings | Bands and
Code | Nuclide | Waste at
1.4.2022 | Bands and
Code | Future
arisings | Bands and
Code | | H 3 | | | 2.05E-05 | CC 2 | Gd 153 | | | | 8 | | Be 10 | | | | 8 | Ho 163 | | | | 8 | | C 14 | | | 3.11E-05 | CC 2 | Ho 166m | | | 2.38E-09 | CC 2 | | Na 22 | | | | 8 | Tm 170 | | | | 8 | | AI 26 | | | | 8 | Tm 171 | | | | 8 | | CI 36 | | | 9.63E-08 | CC 2 | Lu 174 | | | | 8 | | Ar 39 | | | | 8 | Lu 176 | | | | 8 | | Ar 42 | | | | 8 | Hf 178n | | | | 8 | | K 40 | | | | 8 | Hf 182 | | | | 8 | | Ca 41 | | | 8.09E-08 | CC 2 | Pt 193 | | | | 8 | | Mn 53 | | | | 8 | TI 204 | | | | 8 | | Mn 54 | | | | 8 | Pb 205 | | | | 8 | | Fe 55 | | | | 8 | Pb 210 | | | | 8 | | Co 60 | | | | 8 | Bi 208 | | | | 8 | | Ni 59 | | | 1.4E-08 | CC 2 | Bi 210m | | | | 8 | | Ni 63 | | | 8.19E-07 | CC 2 | Po 210 | | | | 8 | | Zn 65 | | | | 8 | Ra 223 | | | | 8 | | Se 79 | | | | 8 | Ra 225 | | | | 8 | | Kr 81 | | | | 8 | Ra 226 | | | | 8 | | Kr 85 | | | 8.74E-07 | CC 2 | Ra 228 | | | | 8 | | Rb 87 | | | | 8 | Ac 227 | | | | 8 | | Sr 90 | | | 2.74E-04 | CC 2 | Th 227 | | | | 8 | | Zr 93 | | | 7.89E-08 | CC 2 | Th 228 | | | | 8 | | Nb 91 | | | | 8 | Th 229 | | | | 8 | | Nb 92 | | | | 8 | Th 230 | | | | 8 | | Nb 93m | | | 7.6E-08 | CC 2 | Th 232 | | | | 8 | | Nb 94 | | | | 8 | Th 234 | | | | 8 | | Mo 93 | | | | 8 | Pa 231 | | | | 8 | | Tc 97 | | | | 8 | Pa 233 | | | 1.05E-09 | CC 2 | | Tc 99 | | | 4.94E-07 | CC 2 | U 232 | | | | 8 | | Ru 106 | | | | 8 | U 233 | | | | 8 | | Pd 107 | | | 7.4E-09 | CC 2 | U 234 | | | 6.3E-09 | CC 2 | | Ag 108m | | | | 8 | U 235 | | | | 8 | | Ag 110m | | | | 8 | U 236 | | | | 8 | | Cd 109 | | | | 8 | U 238 | | | | 8 | | Cd 113m | | | | 8 | Np 237 | | | 1.05E-09 | CC 2 | | Sn 119m | | | | 8 | Pu 236 | | | | 8 | | Sn 121m | | | 3.08E-07 | CC 2 | Pu 238 | | | 1.59E-05 | CC 2 | | Sn 123 | | | | 8 | Pu 239 | | | 1.73E-06 | CC 2 | | Sn 126 | | | 2.98E-08 | CC 2 | Pu 240 | | | 1.52E-05 | CC 2 | | Sb 125 | | | | 8 | Pu 241 | | | 1.97E-05 | CC 2 | | Sb 126 | | | 4.15E-09 | CC 2 | Pu 242 | | | 2.15E-07 | CC 2 | | Te 125m | | | | 8 | Am 241 | | | 3.66E-05 | CC 2 | | Te 127m | | | | 8 | Am 242m | | | 4.17E-08 | CC 2 | | I 129 | | | | 8 | Am 243 | | | 5.43E-06 | CC 2 | | Cs 134 | | | | 8 | Cm 242 | | | 3.45E-08 | CC 2 | | Cs 135 | | | 2.23E-08 | CC 2 | Cm 243 | | | 5.3E-08 | CC 2 | | Cs 137 | | | 5.43E-04 | CC 2 | Cm 244 | | | 1.58E-04 | CC 2 | | Ba 133 | | | | 8 | Cm 245 | | | 3.19E-07 | CC 2 | | La 137 | | | | 8 | Cm 246 | | | 2.3E-06 | CC 2 | | La 138 | | | | 8 | Cm 248 | | | | 8 | | Ce 144 | | | | 8 | Cf 249 | | | 7.55E-09 | CC 2 | | Pm 145 | 1 | | | 8 | Cf 250 | | | 1.23E-09 | CC 2 | | Pm 147 | | | | 8 | Cf 251 | | | | 8 | | Sm 147 | 1 | | | 8 | Cf 252 | | | | 8 | | Sm 151 | | | 2.12E-06 | CC 2 | Other a | | | | | | Eu 152 | | | 1E-06 | CC 2 | Other b/g | | | | | | Eu 154 | | | 4.46E-07 | CC 2 | Total a | 0 | | 2.36E-04 | CC 2 | | Eu 155 | | | | 8 | Total b/g | 0 | | 8.95E-04 | CC 2 | | | I . | | | | | | | - | | ## Bands (Upper and Lower) A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000 Bands quantify uncertainty in mean radioactivity. Note: # Code - 1 Measured activity 2 Derived activity (best estimate) - 3 Derived activity (upper limit) - 4 Not present - 5 Present but not significant - 6 Likely to be present but not assessed - 7 Present in significant quantities but not determined - 8 Not expected to be present in significant quantity