SITE Oldbury

SITE OWNER Nuclear Decommissioning Authority

WASTE CUSTODIAN Magnox Limited

WASTE TYPE ILW

Is the waste subject to

Scottish Policy:

No

WASTE VOLUMES

Reported

Stocks: At 1.4.2022...... 95.6 m³

Total future arisings: 0 m³

Total waste volume: 95.6 m³

Comment on volumes: Future arisings are zero because the vault is full.

Uncertainty factors on Stock (upper): x 1.2 Arisings (upper) x volumes: Stock (lower): x 0.8 Arisings (lower) x

WASTE SOURCE The source of the waste is the removal of splitters from polyzonal fuel elements prior to

dispatch of the elements to Sellafield.

PHYSICAL CHARACTERISTICS

General description: The waste consists of activated Magnox metal and swarf which is contaminated by fission

products and actinides. Individual components may weigh up to about 100 g and be approx. 2 mm x 25 mm x (75-900) mm. Some Nimonic springs will also be present (see waste stream 9E41). There are no large items in the waste which will require special

handling.

Physical components (%wt): Magnox (>99.5% wt). The waste volume will include some fuel element top end fittings

which will incorporate highly active Nimonic springs together with some zirconium alloy -

see waste stream 9E41.

Sealed sources: The waste does not contain sealed sources.

Bulk density (t/m³): 0.28

Comment on density: The density has been calculated using the number of splitters multiplied by the mass of a

splitter to provide the mass, divided by the volume of the waste in the vault (derived from

measurements of the height of the waste and the internal capacity of the vault).

CHEMICAL COMPOSITION

General description and components (%wt):

Magnox Metal (>99.5% wt including impurities). Activation of trace components within the Magnox. Fission product and actinide contamination. It is anticipated that the waste will include some fuel element top end fittings which will incorporate highly active Nimonic

springs (waste stream 9E41) together with some zirconium alloy.

Chemical state: Neutral

Chemical form of radionuclides:

H-3: Tritium is expected to be present as surface contamination, possibly as water, or

perhaps in the form of other inorganic or organic compounds.

C-14: Carbon 14 will be present as graphite.

CI-36: Chlorine 36 incorporated in the Magnox may be associated with barium impurity (barium chloride). Other chlorine 36 may be associated with surface contamination.

Se-79: The selenium content is insignificant. Tc-99: The technetium content is insignificant. Ra: Radium isotope content is insignificant.

Th: Thorium content is insignificant.

U: Chemical form of U isotopes has not been determined but may be oxides.

Np: The neptunium content is insignificant.

Pu: Chemical form of plutonium isotopes has not been determined but may be plutonium

oxides.

Metals and alloys (%wt): No bulk metallic items present. Magnox with impurities which may include beryllium. Also

some zirconium as alloy in the Magnox and as a 'free' metal.

	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel	0		dolivity
Other ferrous metals	0		
Iron			
Aluminium	Р		
Beryllium	TR	Magnox with impurities which may include beryllium. Also some zirconium as alloy in the Magnox and as a 'free' metal.	
Cobalt			
Copper	0		
Lead	0		
Magnox/Magnesium	>99.5	Will consist predominantly of Magnox alloy ZR55. includes 0.55% zirconium and 0.5% aluminium	
Nickel			
Titanium			
Uranium			
Zinc	0		
Zircaloy/Zirconium	Р	some zirconium as alloy in the Magnox and as a 'free' metal.	
Other metals	0		
Organics (%wt): There may be organ	ics preser	nt in trace quantities.	
	(%wt)	Type(s) and comment	% of total C14 activity
Total cellulosics	0		
Paper, cotton	0		
Wood	0		
Halogenated plastics	0		
Total non-halogenated plastics	0	There are no halogenated plastics or rubbers present.	
Condensation polymers	0		
Others	0		
Organic ion exchange materials	0		
Total rubber	0	There are no halogenated plastics or rubbers present.	
Halogenated rubber	0		
Non-halogenated rubber	0		
Hydrocarbons			
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Others			
Other organics	TR		
Other meterials (9/ wt):			

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	0		activity
Inorganic sludges and flocs	0		
Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	0		
Sand			
Glass/Ceramics	0		
Graphite	TR		
Desiccants/Catalysts			
Asbestos	0		
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids	TR		
Free non-aqueous liquids	0		
Powder/Ash	NE		
Inorganic anions (%wt): Inorganic anions ar	e not expe	cted to be present at greater than trace co	oncentrations.
	(%wt)	Type(s) and comment	
Fluoride	TR		
Chloride	TR		
lodide	0		
Cyanide	0		
Carbonate	TR		
Nitrate	TR		
Nitrite	TR		
Phosphate	TR		
Sulphate	TR		
Sulphide	0		
Materials of interest for Magnox will ignite usuaste acceptance criteria:	under appro	opriate conditions.	
	(%wt)	Type(s) and comment	
Combustible metals	>99.5		
Low flash point liquids	0		
Explosive materials	0		
Phosphorus	0		
Hydrides	0		
Biological etc. materials	0		
Biodegradable materials	0		
Putrescible wastes	0		
Non-putrescible wastes			

	Corrosive materials	0	
	Pyrophoric materials	0	
	Generating toxic gases	0	
	Reacting with water	>99.5	
	Higher activity particles		
	Soluble solids as bulk chemical compounds		
Hazardous su non hazardou:			
		(%wt)	Type(s) and comment
	Acrylamide		
	Benzene		
	Chlorinated solvents		
	Formaldehyde		
	Organometallics		
	Phenol		
	Styrene		
	Tri-butyl phosphate		
	Other organophosphates		
	Vinyl chloride		
	Arsenic		
	Barium		
	Boron	0	
	Boron (in Boral)		
	Boron (non-Boral)		
	Cadmium		
	Caesium		
	Selenium		
	Chromium		
	Molybdenum		
	Thallium		
	Tin		
	Vanadium		
	Mercury compounds		
	Others		
	Electronic Electrical Equipment (EEE)		
	EEE Type 1		
	EEE Type 2		
	EEE Type 3		
	EEE Type 4		
	EEE Type 5		

Complexing agents (%wt): Yes		
	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		
Total complexing agents	TR	

Potential for the waste to contain discrete items:

Yes. In & of itself not a DI; Will likely contain "rogue" items (HDRIs) that will be

(see Nimonic/Others)

TREATMENT, PACKAGING AND DISPOSAL

Waste that is currently ILW:

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)	Off-site	100.0
Incineration		
Solidification		
Decontamination		
Metal treatment		
Size reduction		
Decay storage		
Recyling / reuse		
Other / various		
None		

Comment on planned treatments:

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known	100.0	0.28

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Notice	2022/23 2023/24 20		2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
Disposal at LLWR	Disposal at a Geological Disposal Facility	NE	2023	Medium	Baseline position is LLW disposal but this is under threat - under investigation still

Waste Packaging for Disposal:

Container	Stream volume %	Waste loading m ³	Number of packages	
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other	100.0	14.4	7	

Other information: Assessment and further modelling of FED characterisation has resulted in a

change and, therefore, a review of the current waste strategy is underway. In addition, FED sort and segregation learning from Bradwell and Hinkley Point A

is available and provides empirical data to review the current sort and

segregation strategy for FED at Oldbury and Sizewell A.

Waste Planned for Disposal at the LLW Repository:

Container voidage: -

-

Waste consigned for disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation: -

Bounding cuboidal volume:

Inaccessible voidage: -

Other information: -

RADIOACTIVITY

Source: The source of the waste is the removal of splitters from fuel prior to dispatch of the

elements to Sellafield. Activation of trace nuclides in the Magnox and contamination by

fission products and actinides will be main sources of activity.

Uncertainty: The values quoted are indicative of the activities that might be expected.

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

Values were derived from measurements. Data taken from M/EF/OLA/EAN/0002/21 and

underpinning spreadsheets.

Other information: Although the gross beta/gamma activity in the FED material is LLW, this waste stream is

not discrete. The FED material is intimately mixed with highly active Nimonic Springs.

	Mean radioactivity, TBq/m³				Mean radioactivity, TBq/m³				
No. of the	Waste at	Bands and		Bands and	NI PI		Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code
H 3	4.65E-03	CC 2			Gd 153		8		
Be 10		8			Ho 163	1.09E-08	CC 2		
C 14	1.08E-04	CC 2			Ho 166m	2.46E-07	CC 2		
Na 22		8			Tm 170		8		
Al 26		8			Tm 171		8		
CI 36	1.61E-05	CC 2			Lu 174		8		
Ar 39	1.46E-08	CC 2			Lu 176		8		
Ar 42		8			Hf 178n		8		
K 40		8			Hf 182		8		
Ca 41	1.04E-07	CC 2			Pt 193		8		
Mn 53		8			TI 204	1.5E-07	CC 2		
Mn 54		8			Pb 205		8		
Fe 55	4.72E-07	CC 2			Pb 210		8		
Co 60	1.22E-05	CC 2			Bi 208		8		
Ni 59	8.00E-06	CC 2			Bi 210m		8		
Ni 63	7.37E-04	CC 2			Po 210		8		
Zn 65		8			Ra 223		8		
Se 79		8			Ra 225		8		
Kr 81		8			Ra 226		8		
Kr 85		8			Ra 228		8		
Rb 87		8			Ac 227		8		
Sr 90	4.87E-05	CC 2			Th 227		8		
Zr 93	8.02E-06	CC 2			Th 228		8		
Nb 91	1.10E-09	CC 2			Th 229		8		
Nb 92		8			Th 230		8		
Nb 93m	9.13E-06	CC 2			Th 232		8		
Nb 94	8.33E-07	CC 2			Th 234		8		
Mo 93	1.12E-07	CC 2			Pa 231		8		
Tc 97	•	8			Pa 233		8		
Tc 99	1.50E-08	CC 2			U 232		8		
Ru 106		8			U 233		8		
Pd 107		8			U 234		8		
Ag 108m	6.80E-06	CC 2			U 235		8		
Ag 110m	0.002 00	8			U 236		8		
Cd 109		8			U 238		8		
Cd 113m	5.17E-05	CC 2			Np 237		8		
Sn 119m	0.17 L 00	8			Pu 236		8		
Sn 121m	1.84E-07	CC 2			Pu 238	2.82E-07	CC 2		
Sn 123	1.012 01	8			Pu 239	6.25E-07	CC 2		
Sn 126		8			Pu 240	6.43E-07	CC 2		
Sb 125		8			Pu 241	6.34E-06	CC 2		
Sb 126		8			Pu 242	0.012 00	8		
Te 125m		8			Am 241	2.55E-06	CC 2		
Te 127m		8			Am 242m		8		
I 129		8			Am 243		8		
Cs 134		8			Cm 242		8		
Cs 135		8			Cm 243		8		
Cs 137	2.60E-05	CC 2			Cm 244	7.54E-09	CC 2		
Ba 133	3.71E-07	CC 2			Cm 244	7.54L-03	8		
La 137	1.05E-09	CC 2			Cm 246		8		
La 137	1.001-09	8			Cm 248		8		
Ce 144		8			Cff 249		8		
Pm 145	5.57E-08	CC 2			Cf 250		8		
Pm 145 Pm 147	5.37E-08 5.37E-09	CC 2			Cf 250 Cf 251		8		
Sm 147	J.J/ L-09	8			Cf 251		8		
	0 53E 06	CC 2			Other a		0		
Sm 151 Eu 152	9.53E-06 8.58E-08	CC 2			Other a				
		CC 2			Total a	4 11E 06	CC 3	_	
Eu 154	1.96E-07	CC 2				4.11E-06	CC 2	0	
Eu 155	1.82E-07	00 2			Total b/g	5.70E-03	CC 2	0	

Bands (Upper and Lower)

A a factor of 1.5
B a factor of 3
C a factor of 10
D a factor of 100
E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

- 1 Measured activity
 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity
- 8 Not expected to be present in significant quantity