SITE Oldbury SITE OWNER Nuclear Decommissioning Authority WASTE CUSTODIAN Magnox Limited WASTE TYPE ILW Is the waste subject to Scottish Policy: No **WASTE VOLUMES** Comment on volumes: Waste arisings are assumed to occur at a uniform rate over 5 years Final Dismantling & Site Clearance is assumed to commence in 2091 with reactor dismantling commencing in 2096 and lasting for 5 years. The volumes and radioactivity have been calculated for 85 years after reactor shutdown, i.e. 2097. Uncertainty factors on Stock (upper): x Arisings (upper) x 1.2 volumes: Stock (lower): x Arisings (lower) x 0.8 **WASTE SOURCE** A variety of miscellaneous metallic wastes resulting from reactor dismantling. #### PHYSICAL CHARACTERISTICS General description: Reactor components including channel gas outlet thermocouples, core thermocouples and thermocouple insulation. Physical components (%wt): Thermocouple metals 40%, thermocouple insulation 60% Sealed sources: The waste does not contain sealed sources. Bulk density (t/m³): ~1.4 Comment on density: The density is of the waste as cut for packaging. # **CHEMICAL COMPOSITION** General description and components (%wt): Chromel (20%wt), alumel (20%wt) and magnesium oxide (60%wt). Chemical state: Neutral Chemical form of H-3: The tritium content is insignificant. radionuclides: C-14: The carbon 14 content is insignificant. Cl-36: The chlorine 36 will be incorporated in the metal. Se-79: The selenium content is insignificant. Tc-99: The technetium content is insignificant. Ra: The radium content is insignificant. Th: The thorium content is insignificant. U: The uranium content is insignificant. Np: The neptunium content is insignificant. Pu: The plutonium content is insignificant. Metals and alloys (%wt): Items will have been cut for packaging in a standard ILW container. (%wt) Type(s) / Grade(s) with proportions % of total C14 activity Other ferrous metals...... 0 Iron..... Cobalt..... | | Copper | 0 | | | |--------------|----------------------------------|------------|---|-------------------------| | | Lead | 0 | | | | | Magnox/Magnesium | 0 | | | | | Nickel | 40.0 | Chromel (NiCr) (20%wt) and Alumel (NiAl) (20%wt) will be present. | | | | Titanium | | | | | | Uranium | | | | | | Zinc | 0 | | | | | Zircaloy/Zirconium | . 0 | | | | | Other metals | | | | | Organics (% | wt): None expected. No | halogena | ted plastics or rubbers will be present. | | | | | (%wt) | Type(s) and comment | % of total C14 activity | | | Total cellulosics | 0 | | activity | | | Paper, cotton | 0 | | | | | Wood | 0 | | | | | Halogenated plastics | 0 | | | | | Total non-halogenated plastics | 0 | | | | | Condensation polymers | 0 | | | | | Others | 0 | | | | | Organic ion exchange materials | 0 | | | | | Total rubber | 0 | | | | | Halogenated rubber | 0 | | | | | Non-halogenated rubber | 0 | | | | | Hydrocarbons | | | | | | Oil or grease | | | | | | Fuel | | | | | | Asphalt/Tarmac (cont.coal tar) | | | | | | Asphalt/Tarmac (no coal tar) | | | | | | Bitumen | | | | | | Others | | | | | | Other organics | 0 | | | | Other materi | als (%wt): Some graphite dus | t may be a | ssociated with reactor materials. | | | | | (%wt) | Type(s) and comment | % of total C14 activity | | | Inorganic ion exchange materials | 0 | | · | | | Inorganic sludges and flocs | 0 | | | | | Soil | 0 | | | | | Brick/Stone/Rubble | 0 | | | | | Cementitious material | 0 | | | | | Sand | | | | | | Glass/Ceramics | 60.0 | MgO is also expected to be present as thermocouple insulation (60%) | | | | Graphite | TD | | | | Desiccants/Catalysts | | | |--|--------------|---| | Asbestos | 0 | | | Non/low friable | | | | Moderately friable | | | | Highly friable | | | | Free aqueous liquids | 0 | | | Free non-aqueous liquids | 0 | | | Powder/Ash | 0 | | | Inorganic anions (%wt): Trace quantities of | chloride ma | ay be present. | | | (%wt) | Type(s) and comment | | Fluoride | 0 | | | Chloride | TR | | | lodide | 0 | | | Cyanide | 0 | | | Carbonate | 0 | | | Nitrate | 0 | | | Nitrite | 0 | | | Phosphate | 0 | | | Sulphate | 0 | | | Sulphide | 0 | | | Materials of interest for No materials likely waste acceptance criteria: | to pose a fi | re or other non-radiological hazard have been identified. | | | (%wt) | Type(s) and comment | | Combustible metals | 0 | | | Low flash point liquids | 0 | | | Explosive materials | 0 | | | Phosphorus | 0 | | | Hydrides | 0 | | | Biological etc. materials | 0 | | | Biodegradable materials | | | | Putrescible wastes | 0 | | | Non-putrescible wastes | | | | Corrosive materials | 0 | | | Pyrophoric materials | 0 | | | Generating toxic gases | 0 | | | Reacting with water | 0 | | | Higher activity particles | | | | Soluble solids as bulk chemical compounds | | | Hazardous substances / non hazardous pollutants: Complexing None expected | | (%wt) | Type(s) and comment | |---------------------------------------|-------|---------------------| | Acrylamide | | | | Benzene | | | | Chlorinated solvents | | | | Formaldehyde | | | | Organometallics | | | | Phenol | | | | Styrene | | | | Tri-butyl phosphate | | | | Other organophosphates | | | | Vinyl chloride | | | | Arsenic | | | | Barium | | | | Boron | | | | Boron (in Boral) | | | | Boron (non-Boral) | | | | Cadmium | | | | Caesium | | | | Selenium | | | | Chromium | | | | Molybdenum | | | | Thallium | | | | Tin | | | | Vanadium | | | | Mercury compounds | | | | Others | | | | Electronic Electrical Equipment (EEE) | | | | EEE Type 1 | | | | EEE Type 2 | | | | EEE Type 3 | | | | EEE Type 4 | | | | EEE Type 5 | | | | agents (%wt): Yes | | | | | (%wt) | Type(s) and comment | | EDTA | | | | DPTA | | | | NTA | | | | Polycarboxylic acids | | | | Other organic complexants | | | | Total complexing agents | TR | | Potential for the waste to contain discrete items: Yes. Large Metal Items (LMIs)/"substantial" thickness items considered "durable" assumed DIs; All stainless items assumed DIs. NB if recycled then DI Limits n/a. Insulation - In & of itself not a DI; waste stream may include DIs (Stainless items). If LLW then assumed drummed (ungrouted) & compacted so NOT DI (unless drums are grouted instead). ### **PACKAGING AND CONDITIONING** Conditioning method: The waste is not expected to be supercompacted. The treatment envisaged is the placement of the waste in baskets followed by encapsulation. Plant Name: None Location: Oldbury Power Station Plant startup date: About 2096 Total capacity ~5000.0 (m³/y incoming waste): Target start date for packaging this stream: 2096 Throughput for this stream (m³/y incoming waste): < 0.1 Other information: The processing strategy has not yet been determined. Likely container type: | Container | Waste
packaged
(%vol) | Waste loading (m³) | Payload
(m³) | Number of packages | |-----------------------|-----------------------------|--------------------|-----------------|--------------------| | 4m box (no shielding) | 100.0 | 16.2 | 18.9 | < 1 | Likely container type comment: The container choice may be influenced by the Transport Regulations at the time of Final Site Clearance. The waste is assumed to be in baskets in the waste package so the occupied volume in the package is greater than the original waste volume. Range in container waste volume: Not yet determined No significant variability is expected. Other information on containers: The container material is expected to be stainless steel. Likely conditioning matrix: Other information: Blast Furnace Slag / Ordinary Portland Cement Other information. The waste is assumed to be encapsulated. Conditioned density (t/m³): Conditioned density comment: The conditioned waste density assumes that the waste will be encapsulated. Other information on conditioning: The waste will be in baskets placed in the waste packages. Baskets of different Final Site Clearance ILW wastes may be in the same waste package. The encapsulation matrix is likely to be BFS/OPC and the density of the conditioned waste product would be about 3 t/m3. The volume of this stream is small and will not fill one box. Data have been presented as if the waste will be placed in a container with other ILW. Opportunities for alternative disposal routing: - ~3.0 | Baseline Opportunity Stream Date that Opportunity Management Route Management Route volume (%) will be realised Estimated Opportunity Opportunity Confidence | nment | |---|-------| |---|-------| ### **RADIOACTIVITY** Source: Activation of the metals and impurities. | WASTE STREAM | 9E320 | Miscellaneous Metals (Reactor) ILW | |--------------|-------|------------------------------------| | | | | Uncertainty: The values quoted were derived by calculation from available material specification and are indicative of the activities that are expected. The major source of uncertainty is the impurity levels. Definition of total alpha and total beta/gamma: Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'. Measurement of radioactivities: The specific activities have been estimated using a neutron activation calculation. The activities quoted are those at 85 years after reactor shutdown i.e. in 2097. There may Other information: be some contamination by Cs137. | | Mean radioactivity, TBq/m³ | | | Mean radioactivity, TBq/m³ | | | | | | |------------------|----------------------------|-------------------|--------------------|----------------------------|-----------|----------------------|-------------------|--------------------|-------------------| | Nuclide | Waste at
1.4.2022 | Bands and
Code | Future
arisings | Bands and
Code | Nuclide | Waste at
1.4.2022 | Bands and
Code | Future
arisings | Bands and
Code | | H 3 | | | | 8 | Gd 153 | | | | 8 | | Be 10 | | | | 8 | Ho 163 | | | | 8 | | C 14 | | | | 8 | Ho 166m | | | | 8 | | Na 22 | | | | 8 | Tm 170 | | | | 8 | | Al 26 | | | 5E-04 | CC 2 | Tm 171 | | | | 8 | | CI 36 | | | 1.95E-02 | CC 2 | Lu 174 | | | | 8 | | Ar 39 | | | | 8 | Lu 176 | | | | 8 | | Ar 42 | | | | 8 | Hf 178n | | | | 8 | | K 40 | | | | 8 | Hf 182 | | | | 8 | | Ca 41 | | | 7.62E-02 | CC 2 | Pt 193 | | | | 8 | | Mn 53 | | | | 8 | TI 204 | | | | 8 | | Mn 54 | | | | 8 | Pb 205 | | | | 8 | | Fe 55 | | | 5.05E-09 | CC 2 | Pb 210 | | | | 8 | | Co 60 | | | 3.08E-02 | CC 2 | Bi 208 | | | | 8 | | Ni 59 | | | 2.06E+01 | CC 2 | Bi 210m | | | | 8 | | Ni 63 | | | 1.67E+03 | CC 2 | Po 210 | | | | 8 | | Zn 65 | Ī | | | 8 | Ra 223 | | | | 8 | | Se 79 | | | | 8 | Ra 225 | | | | 8 | | Kr 81 | | | | 8 | Ra 226 | | | | 8 | | Kr 85 | | | | 8 | Ra 228 | | | | 8 | | Rb 87 | | | | 8 | Ac 227 | | | | 8 | | Sr 90 | | | | 8 | Th 227 | | | | 8 | | Zr 93 | | | | 8 | Th 228 | | | | 8 | | Nb 91 | | | | 8 | Th 229 | | | | 8 | | Nb 92 | | | | 8 | Th 230 | | | | 8 | | Nb 93m | | | | 8 | Th 232 | | | | 8 | | Nb 94 | | | | 8 | Th 234 | | | | 8 | | Mo 93 | | | | 8 | Pa 231 | | | | 8 | | Tc 97 | | | | 8 | Pa 233 | | | | 8 | | Tc 99 | | | | 8 | U 232 | | | | 8 | | Ru 106 | | | | 8 | U 233 | | | | 8 | | Pd 107 | | | | 8 | U 234 | | | | 8 | | Ag 108m | | | | 8 | U 235 | | | | 8 | | Ag 110m | | | | 8 | U 236 | | | | 8 | | Cd 109 | | | | 8 | U 238 | | | | 8 | | Cd 113m | | | | 8 | Np 237 | | | | 8 | | Sn 119m | | | | 8 | Pu 236 | | | | 8 | | Sn 121m | | | | 8 | Pu 238 | | | | 8 | | Sn 123 | | | | 8 | Pu 239 | | | | 8 | | Sn 126 | | | | 8 | Pu 240 | | | | 8 | | Sb 125 | | | | 8 | Pu 241 | | | | 8 | | Sb 126 | | | | 8 | Pu 242 | | | | 8 | | Te 125m | | | | 8 | Am 241 | | | | 8 | | Te 127m | | | | 8 | Am 242m | | | | 8 | | l 129 | | | | 8 | Am 243 | | | | 8 | | Cs 134 | | | | 8 | Cm 242 | | | | 8 | | Cs 135 | | | | 8 | Cm 243 | | | | 8 | | Cs 137 | | | | 6 | Cm 244 | | | | 8 | | Ba 133 | | | | 8 | Cm 245 | | | | 8 | | La 137 | | | | 8 | Cm 246 | | | | 8 | | La 138 | | | | 8 | Cm 248 | | | | 8 | | Ce 144 | | | | 8 | Cf 249 | | | | 8 | | Pm 145 | | | | 8 | Cf 250 | | | | 8 | | Pm 147 | | | | 8 | Cf 251 | | | | 8 | | Sm 147 | | | | 8 | Cf 252 | | | | 8 | | Sm 151 | | | | 8 | Other a | | | | - | | Eu 152 | | | | 8 | Other b/g | | | | | | Eu 154 | | | | 8 | Total a | 0 | | 0 | | | Eu 154
Eu 155 | | | | 8 | Total b/g | 0 | | 1.69E+03 | CC 2 | | Lu 100 | <u> </u> | | <u> </u> | U | | ľ | | | | ## Bands (Upper and Lower) A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000 Bands quantify uncertainty in mean radioactivity. ## Code - 1 Measured activity - 1 Measured activity 2 Derived activity (best estimate) 3 Derived activity (upper limit) 4 Not present 5 Present but not significant 6 Likely to be present but not assessed 7 Present in significant quantities but not determined 8 Not expected to be present in significant quantity