SITE	Oldbury				
SITE OWNER	Nuclear Decommissioning Author	Nuclear Decommissioning Authority			
WASTE CUSTODIAN	Magnox Limited				
WASTE TYPE	LLW	LLW			
Is the waste subject to Scottish Policy:	No	Νο			
WASTE VOLUMES		Reported			
Stocks:	At 1.4.2022	3.5 m ³			
Future arisings -	1.4.2022 - 31.3.2023 1.4.2023 - 31.3.2025 1.4.2025 - 31.3.2026 1.4.2026 - 31.3.2031	4.3 m ³ 10.0 m ³ 10.0 m ³ 118.1 m ³			
Total future arisings:		142.4 m ³			
Total waste volume:		145.8 m ³			
Comment on volumes:	Waste in this stream is assumed	to arise after defueling.			
Uncertainty factors on volumes:	Stock (upper): x 1.2 Stock (lower): x 0.8	Arisings (upper) Arisings (lower)	x 1.2 x 0.8		
WASTE SOURCE	The 9E913 waste stream captures operational and maintenance wastes from the Active Effluent Treatment Plant (AETP) and associated areas. The AETP provides the processing facilities for active effluents onsite. Pond Water Treatment Plant and Active Waste Vaults are now incorporated into 9E914.				

PHYSICAL CHARACTERISTICS

General description:	This stream will act as an operational support waste stream as the majority of work planned is expected to be focused on the operation and maintenance of the AETP. It should be noted that the AETP fine filters and associated waste will now be consigned under the 9E913 waste stream. The waste consigned under waste stream 9E913 mainly comprises metal (aluminium, copper, iron, magnesium, mild steel, stainless steel, zinc and lead), concrete and rubble, soil, biodegradable materials, plasterboard, plastics, rubber, wood and other materials including EEE materials, MMMF, asbestos, glass and sand. The waste is expected to be in the form of mixed trash, with occasional large items such as pipework, motors and pumps.Fixative is included as it may be used to seal surface contamination to prevent an airborne hazard during size reduction operations.
Physical components (%wt):	Metal (~34%wt), rubble including concrete and brick/blockwork (~7%wt), soil (~1%), biodegradables (~2%), plasterboard (1%), PVC/plastic pipework (~16%wt), rubber (~1%), wood (~4%wt), other organic (~1%) and others including asbestos and sand (~33%).
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	~0.27
Comment on density:	Data taken from WCH mass divided by volume.

CHEMICAL COMPOSITION

General description and components (%wt):	The waste comprises metal (~34%wt), rubble including concrete and brick/blockwork (~7%wt), soil (~1%), biodegradables (~2%), plasterboard (1%), PVC/plastic pipework (~16%wt), rubber (~1%), wood (~4%wt), other organic (~1%) and others including asbestos and sand (~33%).
Chemical state:	-
Chemical form of radionuclides:	 H-3: The tritium may be present as tritiated water. C-14: The chemical form of carbon 14 has not been determined. Cl-36: The chemical form of chlorine 36 has not been determined. Se-79: The selenium content is insignificant. Tc-99: The technetium content is insignificant. Ra: Radium isotope content is expected to be insignificant. Th: The thorium content is insignificant. U: Chemical form of uranium isotopes has not been determined but may be uranium oxides. Np: The neptunium content is insignificant.

Pu: Chemical form of plutonium isotopes has not been determined but may be plutonium oxides.

Metals and alloys (%wt):

The thickness of the metal varies from 1 mm to 30 mm.

	(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel	~12.7	Items such as pipework, flooring plates, brackets, frames.	
Other ferrous metals	~16.3	Mild steel - Items such as pipework, flooring plates, brackets, frames.	
Iron	0.54	Iron in waste items such as cast iron piping.	
Aluminium	~0.78	Aluminium in waste items such as ladders and ducting.	
Beryllium	0		
Cobalt			
Copper	0.47	Trace in waste items such as pipework.	
Lead	2.9	Sheet, pipe, block & shot.	
Magnox/Magnesium	0.01	Trace in waste items.	
Nickel			
Titanium			
Uranium	NE		
Zinc	0.26	Galvanised steel in items such as gratings or buckets.	
Zircaloy/Zirconium	TR		
Other metals	0	"Other" metals have not been identified. Mass estimates in the table above for mild steel and stainless steel include the constituent alloying elements such as Cr, Fe, Ni, & Co. Therefore, these constituent alloying elements are not recorded seperately to avoid double accounting.	

Organics (%wt):

Trace quantities of oil may be present.

	(%wt)	Type(s) and comment	% of total C14 activity
Total cellulosics	~4.0		county
Paper, cotton	0		
Wood	~4.0		
Halogenated plastics	~9.0	PVC, PPE.	
Total non-halogenated plastics	7.0		
Condensation polymers	0		
Others	7.0	Pipes, poly, PPE, perspex,containers, sheet and hoses.	
Organic ion exchange materials	0		
Total rubber	~1.0		
Halogenated rubber	~0.50	Neoprene.	
Non-halogenated rubber	~0.50		
Hydrocarbons			
Oil or grease			

Fuel	
Asphalt/Tarmac (cont.coal tar)	
Asphalt/Tarmac (no coal tar)	
Bitumen	
Others	
Other organics	~1.0

Other materials (%wt):

	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	0		
Inorganic sludges and flocs	0		
Soil	~1.0		
Brick/Stone/Rubble	~7.0		
Cementitious material			
Sand	31.8	Sand - included in others total in WCH (3 tonnes).	
Glass/Ceramics	0.22	0.11% MMMF Lagging, 0.11% glass.	
Graphite	0		
Desiccants/Catalysts			
Asbestos	0.22		
Non/low friable	0.11	Gaskets/joints chrysotile (white).	
Moderately friable	0		
Highly friable	0.11	Lagging / gaskets chrysotile (white).	
Free aqueous liquids	0		
Free non-aqueous liquids	0		
Powder/Ash	TR		

Inorganic anions (%wt):

Carbonates and sulphates expected to be present in trace quantities.

	(%wt)	Type(s) and comment
Fluoride	0	
Chloride	0	
lodide	0	
Cyanide	0	
Carbonate	TR	
Nitrate	0	
Nitrite	0	
Phosphate	0	
Sulphate	TR	
Sulphide	0	

Materials of interest for waste acceptance criteria:

There may be traces of powder as residues. Magnox may be present in trace quantities, but will not constitute a hazard.

	(%wt)
Combustible metals	TR
Low flash point liquids	0
Explosive materials	0
Phosphorus	0
Hydrides	0
Biological etc. materials	0
Biodegradable materials	2.0
Putrescible wastes	1.0
Non-putrescible wastes	1.0
Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	Р
Higher activity particles	
Soluble solids as bulk chemical compounds	
ubstances / -	

Type(s) and comment

Hazardous substances / non hazardous pollutants:

(%wt)

0

Type(s) and comment

20.846m2

Acrylamide
Benzene
Chlorinated solvents
Formaldehyde
Organometallics
Phenol
Styrene
Tri-butyl phosphate
Other organophosphates
Vinyl chloride
Arsenic
Barium
Boron
Boron (in Boral)
Boron (non-Boral)
Cadmium
Caesium
Selenium
Chromium
Molybdenum
Thallium
Tin
Vanadium
2022

Mercury compounds		
Others	~1.0	Others include ET-150-AF Fixative (~0.26%), and EEE materials (~0.63%). The weight of EEE materials is approx. 60kg.
Electronic Electrical Equipment (EEE)	
EEE Type 1	Р	25 off Stripped down circuit boards.
EEE Type 2	Ρ	50 off Plant items containing electrical components e.g. pumps and motors, transformers and capacitors.
EEE Type 3	Р	100 off Electrical tools e.g. saws and drills.
EEE Type 4	Р	50 off Fluorescent tubes / lamps.
EEE Type 5	Ρ	10 off Rechargeable batteries which are nickel- Cadmium and Lithium-ion.
Complexing agents (%wt): No		
	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		
Total complexing agents	0	
		a DI; assumed not likely to contain any "rogue" al Items (LMIs)/"substantial" thickness items

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):	Treatment	On-site / Off site	Stream volume %
	Low force compaction	On-site	14.3
	Supercompaction (HFC)	Off-site	14.3
	Incineration	Off-site	42.9
	Solidification		
	Decontamination		
	Metal treatment	Off-site	8.6
	Size reduction		
	Decay storage		
	Recyling / reuse		
	Other / various		
	None		34.3
Comment on planned treatments:	14.29% of this waste stream is expected	d to be sent for VLLW Land	dfill disposal.

considered "durable" assumed DIs; Stainless items assumed DIs

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3	
Expected to be consigned to the LLW Repository	34.3	0.27	
Expected to be consigned to a Landfill Facility	14.3	0.27	
Expected to be consigned to an On-Site Disposal Facility			
Expected to be consigned to an Incineration Facility	42.9	0.40	
Expected to be consigned to a Metal Treatment Facility	8.6	1.4	
Expected to be consigned as Out of Scope			
Expected to be recycled / reused			
Disposal route not known			

WASTE STREAM	9E913	AETP LLW

Classification codes for waste expected to be consigned to a landfill facility:

17 04 05, 17 01 07, 17 02 01, 17 02 02, 17 02 03, 17 05 04, 17 06 04,

17 06 01*

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %			
	2022/23	2023/24	2024/25	
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known				

Opportunities for alternative disposal routing:

Estimated Baseline Opportunity Stream Date that Management Route Management Route volume (%) will be realised	Opportunity Confidence	Comment	
--	---------------------------	---------	--

Waste Packaging for Disposal:

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO			
1/2 Height WAMAC IP-2 ISO	14.3	43.2	< 1
1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding)	20.0	10	3
4m box (no shielding)			
Other			

Other information:

year of generation:

It is likely that this waste will be placed in a container with other LLW. 43.2m3 loading volume is calculated based on the fact that you can low force compact two times the normal volume of waste into a 200 litre/0.2m3 drum (400 litres/0.4m3), you can then fit 36 drums (14.4m3) into a $\frac{1}{2}$ height ISO, each drum can be super-compacted to a 1/3 of its original volume so therefore we can get 3 x the amount of un-compacted drums into the final disposal container (43.2m3).

Waste Planned for Disposal at the LLW Repository:

Container voidage: No significant inaccessible voidage is expected.

Waste Characterisation Form (WCH):	The waste meets the LLWR's Waste Acceptance Criteria (WAC). The waste has a current WCH. Inventory information is consistent with the current WCH.
Waste consigned for disposal to LLWR in	Yes.

Non-Containerised Waste for	In-Vault Grouting:	(Not applicable to this waste stream)
Stream volume (%):	-	
Waste stream variation:	-	
Bounding cuboidal volume:		
Inaccessible voidage:	-	

-

Other information:

RADIOACTIVITY	
Source:	Activation and contamination of materials.
Uncertainty:	Activity values are current best estimates. Specific activity is a function of Station operating history. The values quoted are indicative of the activities that would be expected, although demolition wastes are predicted to be lower in activity than the routine operational wastes and so the values quoted for this stream are expected to be an over estimate.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	Data taken from WCH -1MXN-3OLD-0-WCH-0-4749 V4 and decayed by 1 year for RWI 2022.
Other information:	

	Mean radioactivity, TBq/m ³					Mean radioactivity, TBq/m ³			
Nuclide	Waste at	Bands and	Future	Bands and	Nuclide	Waste at	Bands and	Future	Bands and
	1.4.2022	Code	arisings	Code		1.4.2022	Code	arisings	Code
H 3	2.37E-06	CC 1	2.37E-06	CC 1	Gd 153		8		8
Be 10	4 505 00	8	1 505 00	8	Ho 163		8		8
C 14	1.58E-06	CC 1	1.58E-06	CC 1	Ho 166m		8		8
Na 22		8		8	Tm 170		8		8
AI 26		8		8	Tm 171		8		8
CI 36	1.81E-08	CC 1	1.81E-08	CC 1	Lu 174		8		8
Ar 39		8		8	Lu 176		8		8
Ar 42		8		8	Hf 178n		8		8
K 40		8		8	Hf 182		8		8
Ca 41		8		8	Pt 193		8		8
Mn 53		8		8	TI 204		8		8
Mn 54		8		8	Pb 205		8		8
Fe 55	8.87E-07	CC 1	8.87E-07	CC 1	Pb 210		8		8
Co 60	1.59E-07	CC 2	1.59E-07	CC 2	Bi 208		8		8
Ni 59		8		8	Bi 210m		8		8
Ni 63	3.28E-07	CC 1	3.28E-07	CC 1	Po 210		8		8
Zn 65		8		8	Ra 223		8		8
Se 79		8		8	Ra 225		8		8
Kr 81		8		8	Ra 226		8		8
Kr 85		8		8	Ra 228		8		8
Rb 87		8		8	Ac 227		8		8
Sr 90	1.95E-05	CC 1	1.95E-05	CC 1	Th 227		8		8
Zr 93		8		8	Th 228		8		8
Nb 91		8		8	Th 229		8		8
Nb 92		8		8	Th 230		8		8
Nb 93m		8		8	Th 232		8		8
Nb 94	1.39E-07	CC 2	1.39E-07	CC 2	Th 234		8		8
Mo 93		8		8	Pa 231		8		8
Tc 97		8		8	Pa 233		8		8
Tc 99		8		8	U 232		8		8
Ru 106	1.02E-08	CC 2	1.02E-08	CC 2	U 233		8		8
Pd 107		8		8	U 234		8		8
Ag 108m	3.36E-07	CC 2	3.36E-07	CC 2	U 235		8		8
Ag 110m		8		8	U 236		8		8
Cd 109		8		8	U 238		8		8
Cd 113m		8		8	Np 237		8		8
Sn 119m		8		8	Pu 236		8		8
Sn 121m		8		8	Pu 238	5.2E-07	CC 1	5.2E-07	CC 1
Sn 123		8		8	Pu 239	6.04E-07	CC 1	6.04E-07	CC 1
Sn 126		8		8	Pu 240	8.3E-07	CC 1	8.3E-07	CC 1
Sb 125	1.4E-07	CC 2	1.4E-07	CC 2	Pu 241	1.79E-05	CC 1	1.79E-05	CC 1
Sb 126	1.42 07	8	1.42 07	8	Pu 242		8		8
Te 125m	3.44E-08	CC 2	3.44E-08	CC 2	Am 241	1.19E-06	CC 1	1.19E-06	CC 1
Te 127m	3.44∟-00	8	3.442-00	8	Am 242m		8		8
					Am 243		8		8
l 129		8		8	Cm 242		8		8
Cs 134	9.98E-07	CC 2	9.98E-07	CC 2	Cm 242 Cm 243		8		8
Cs 135	1 405 00	8	4 405 00	8	Cm 243 Cm 244	1.01E-08	CC 1	1.01E-08	CC 1
Cs 137	1.13E-03	CC 2	1.13E-03	CC 2	Cm 244 Cm 245	1.012-00	8		8
Ba 133	2.69E-07	CC 2	2.69E-07	CC 2	Cm 245 Cm 246		8		8
La 137		8		8	Cm 246 Cm 248				
La 138		8		8			8		8
Ce 144		8		8	Cf 249		8		8
Pm 145		8		8	Cf 250		8		8
Pm 147	8.22E-08	CC 1	8.22E-08	CC 1	Cf 251		8		8
Sm 147		8		8	Cf 252		8		8
Sm 151		8		8	Other a				
Eu 152	9.23E-07	CC 2	9.23E-07	CC 2	Other b/g				
Eu 154	1.3E-07	CC 2	1.3E-07	CC 2	Total a	3.15E-06	CC 2	3.15E-06	CC 2
Eu 155	1 15E-07	CC_2	1 15E-07	CC^{2}	Total b/g	1.18E-03	CC 2	1.18E-03	CC 2

Bands (Upper and Lower)

A a factor of 1.5

Eu 155

B a factor of 3 C a factor of 10

D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

1.15E-07

CC 2

1.15E-07

Code

Total b/g

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

1.18E-03

CC 2

1.18E-03

CC 2

7 Present in significant quantities but not determined 8 Not expected to be present in significant quantity

CC 2